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PREFACE 

In  this  volume  the  author  has  attempted  to  produce  a  text- 
book on  Geodesy  adapted  to  a  course  of  moderate  length.  The 

material  has  not  been  limited  to  what  could  be  actually  covered 

in  the  class,  but  much  has  been  included  for  the  purpose  of  giving 

the  student  a  broader  outlook  and  encouraging  him  to  pursue  the 

subject  farther.  Numerous  references  are  given  to  the  standard 
works. 

Throughout  the  book  the  aim  has  been  to  make  the  underlying 

principles  clear,  and  to  emphasize  the  theory  as  well  as  the  details 

of  field  work.  The  methods  of  observing  and  computing  have 

been  brought  up  to  date  so  as  to  be  consistent  with  the  present 

practice  of  the  Coast  and  Geodetic  Survey. 

The  chapters  on  astronomy  and  least  squares  are  included  for 

the  sake  of  completeness  but  do  not  pretend  to  be  more  than  in- 
troductions to  the  standard  works.  The  student  cannot  expect 

to  master  either  of  these  subjects  in  a  short  course  on  geodesy,  but 

must  make  a  special  study  of  each. 

The  author  desires  to  acknowledge  his  indebtedness  to  those 

who  have  assisted  in  the  preparation  of  this  book,  and  especially 

to  Professor  J.  W.  Howard  of  the  Massachusetts  Institute  of 

Technology  for  suggestions  and  criticism  of  the  manuscript;  to 

the  Superintendent  of  the  Coast  and  Geodetic  Survey  for  valuable 

data  and  for  the  use  of  many  photographs  for  illustrations ;  and  to 

Messrs'.  C.  L.  Berger  &  Sons  for  the  use  of  photographs  of  the 
pendulum  apparatus  and  several  electrotype  plates.  Tables  XII 

to  XVII  are  from  electrotype  plates  from  Breed  and  Hosmer's 
Principles  and  Practice  of  Surveying,  Vol.  II. 

G.  L.  H. 
Cambridge,  April,  1919. 
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GEODESY 

CHAPTER   I 

GEODESY  AND   GEODETIC   SURVEYING  — 
TRIANGULATION 

1.  Geodesy. 

Geodesy  is  the  science  which  treats  of  investigations  of  the 

form  and  dimensions  of  the  earth's  surface  by  direct  measure- 
ments. The  two  methods  chiefly  employed  in  determining  the 

earth's  figure  are  (i)  the  measurement  of  arcs  on  the  surface, 
combined  with  the  determination  of  the  astronomical  positions 

of  points  on  these  arcs,  and  (2)  direct  observation  of  the  variation 

in  the  force  of  gravity  in  different  parts  of  the  earth's  surface. 
2.  Geodetic  Surveying. 

Geodetic.  Surveying  is  that  branch  of  the  art  of  surveying 

which  deals  with  such  great  areas  that  it  becomes  necessary  to 

make  systematic  allowance  for  the  effect  of  the  earth's  curvature. 
In  making  an  accurate  survey  of  a  whole  country,  for  example, 

the  methods  of  plane  surveying  no  longer  suffice,  and  the  whole 

theory  of  locating  points  and  calculating  their  positions  must  be 

modified  accordingly.  Such  surveys  require  the  accurate  loca- 
tion of  points  separated  by  long  distances,  to  control  the  accuracy 

of  subsequent  surveys  for  details,  such  as  coast  charts  and  topo- 
graphic maps,  or  for  national  and  state  boundaries.  The  general 

method  employed  is  that  of  triangulation,  in  which  the  location 

of  points  is  made  to  depend  upon  the  measurement  of  horizontal 

angles,  the  distances  being  calculated  by  trigonometry  instead 

of  being  measured  directly.  This  method  was  first  applied  to 

the  measurement  of  arcs  on  the  earth's  surface  by  Snellius  of 
Holland  in  161 5. 
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Although  we  may  make  this  distinction  when  defining  the 

terms  it  is  not  necessary  to  separate  the  two  in  practice.  It  is 

evident  that  geodetic  surveys  must  be  made  before  accurate 

dimensions  of  the  earth  can  be  computed;  and,  conversely, 

it  is  true  that  before  geodetic  surveys  can  be  calculated  exactly, 

the  earth's  dimensions  must  be  known.  Hence  geodetic  surveys 
are. usually  conducted  with  a  twofold  purpose:  (i)  for  collecting 

the  scientific  data  of  geodesy,  and  (2)  for  mapping  large  areas, 

every  survey  depending  upon  data  previously  determined,  but 

also  adding  to  or  improving  the  data  already  existing.  For  this 

reason  the  measurements  are  made  with  greater  refinement  than 

would  be  necessary  for  practical  purposes  alone. 

3.  Triangulation. 

A  triangulation  system  consists  of  a  network  of  triangles  the 

vertices  of  which  are  marked  points  on  the  earth's  surface.  It  is 
essential  that  the  length  of  one  side  of  some  triangle  should  be 

measured,  and  also  that  a  sufficient  number  of  angles  should  be 

measured  to  make  possible  the  calculation  of  all  the  remaining 

triangle  sides.  In  addition  to  the  measurements  that  are  abso- 
lutely necessary  for  making  these  calculations  it  is  important  to 

have  other  measurements  for  the  purpose  of  verifying  the  ac- 

curacy of  both  the  calculations  and  the  field-work. 
4.  Classes  of  Triangulation. 

Triangulation  is  divided,  somewhat  arbitrarily,  into  three 

grades,  called  primary,  secondary,  and  tertiary,  the  classification 

depending  upon  the  purpose  for  which  the  triangulation  is  to  be 

used  and  upon  the  degree  of  accuracy  demanded.  The  primary 

system  is  planned  and  executed  for  the  purpose  of  furnishing  a 

few  well-determined  positions  for  controlUng  the  accuracy  of  all 

dependent  surveys.  Since  the  primary  is  usually  the  only  tri- 
angulation which  is  employed  in  the  purely  scientific  problems 

of  geodesy,  the  selection  of  the  primary  points  will  be  governed 

in  part  by  the  requirements  of  any  geodetic  problem  that  it  is 

proposed  to  investigate.  The  secondary  triangulation  is  some- 
what less  accurate  than  the  primary,  and  the  lines  are  generally 
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shorter;  it  is  often  simply  a  means  of  connecting  the  primary  with 
the  tertiary  system.  Sometimes  the  secondary  is  extended  into 
a  region  which  is  to  be  surveyed  but  which  is  not  covered  at  all 

by  the  primary  triangulation,  and  then  it  becomes  the  con- 
troUing  triangulation  of  the  region.  The  tertiary  triangulation 
furnishes  points  needed  for  filling  in  details  on  the  hydrographic 

or  topographic  maps.  It  is  of  a  low  order  of  accuracy  as  com- 
pared with  the  primary,  but  is  amply  accurate  for  controlling 

the  surveys  for  detail.  These  tertiary  stations  furnish  the  start- 
ing points  for  plane-table  surveys,  traverse  Unes,  etc.  All  three 

classes  of  triangulation  are  not  necessarily  present  in  a  survey 

unless  it  be  a  very  extensive  one.  In  surveys  of  minor  import- 
ance there  may  be  but  one  class  of  triangulation. 

5.  Length  of  Line. 
The  length  of  line  which  may  be  used  is  determined  largely  by 

the  character  of  the  country  to  be  surveyed.  In  California, 

where  the  mountains  are  high  and  the  atmosphere  is  exception- 

ally clear,  the  network  of  triangulation  known  as  the  "Davidson 
quadrilaterals"  (Fig.  i)  is  composed  of  lines  varying  in  length 
from  50  to  over  150  miles;  whereas  in  flat  country,  lines  from 
15  to  25  miles  long  are  the  most  common.  Although  the 
progress  of  the  triangulation  is  apparently  more  rapid  when 
long  lines  are  used,  it  is  not  negessarily  economical  to  use  very 
long  sights.  The  time  gained  by  having  but  few  stations  to 
occupy  may  be  more  than  offset  by  the  delays  due  to  unfavorable 
atmospheric  conditions.  Furthermore,  it  may  be  necessary  to 
introduce  many  additional  stations  in  the  detail  surveys  in  order 
to  reach  all  parts  of  the  area  to  be  mapped.  The  accuracy  of 
triangulation  is  not  appreciably  lessened  by  using  rather  short 
lines.  In  planning  the  system  an  attempt  should  be  made  to  use 
that  length  of  Une  which  will  result  in  the  greatest  economy, 
taking  into  consideration  the  cost  of  reconnoissance,  signal 

building,  base-line  measurement,  and  the  measurement  of  the 
angles. 
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6.   Check  Bases. 

It  has  already  been  stated  that  at  least  one  line  in  a  system 
must  be  measured.  In  order  to  verify  the  accuracy  of  all  the 
measurements,  it  is  customary  to  introduce  additional  base  lines 
into  the  triangulation  at  intervals  varying  from  50  to  500  miles. 

.Ul^haaM 

20  40  60  80         100 

Fig.  I.    Primary  Triangulation  in  California  (Davidson  Quadrilaterals). 

The  lengths  of  these  bases  may  be  found  by  calculation  of  the  tri- 
angles as  well  as  by  the  direct  measurement;  this  furnishes  a 

most  valuable  check  on  the  accuracy  of  the  field  work.  In  the 
triangulation  of  the  United  States  Coast  and  Geodetic  Survey 

the  frequency  with  which  these  check  bases  should  occur  is  de- 
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termined  by  the  strength  of  the  chain  of  triangulation  as  found 

by  the  method  given  in  Art.  8.     The  factor  Ri  (Equa.  [a])  be- 
tween bases  should  be  about  130  for  primary  work,  although  this 

may  be  increased  to  200  if  necessary. 
In  the  triangulation  of  New  England  there  are  three  bases:  (i) Cooper 
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Fig.  2.     Primary  Triangulation  of  New  England. 

the  Fire  Island  base,  about  9  miles  long,  in  the  southern  part  of 
Long  Island;  (2)  the  Massachusetts  base,  about  10  miles  long, 
near  the  Northeast  corner  of  Rhode  Island;  and  (3)  the  Epping 
base,  about  5  miles  long,  in  Maine.  These  base  lines  are  shown 
as  heavy  lines  in  Fig.  2.  The  total  length  of  the  triangulation 
between  the  Epping  and  Fire  Island  bases  is  about  350  miles. 
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The  accuracy  with  which  the  triangulation  was  executed  is  indi- 
cated by  a  comparison  of  the  measured  and  computed  lengths. 

The  length  of  the  Epping  base  as  calculated  from  the  Fire  Island 
base  is  0.042  meter  less  than  the  measured  length;  the  length  of 
Epping  base  calculated  from  the  Massachusetts  base  is  0.136 
meter  less  than  the  measured  length. 

7.  Geometric  Figure. 
The  geometric  figure  generally  recognized  as  the  best  one  for 

triangulation  purposes  is  the  quadrilateral,  consisting  of  four 
stations  joined  by  six  lines,  thus  forming  four  triangles  in  which 
there  are  altogether  eight  independent  angles  to  be  measured. 
This  figure  furnishes  a  greater  number  of  checks  than  any  of  the 
simple  figures  and  therefore  gives  a  good  determination  of  length. 
The  polygon  having  an  interior  station  is  also  a  strong  figure. 
Figures  which  are  more  complex  than  these  usually  make  the 
calculation  troublesome  and  expensive,  while  simpler  figures, 
like  single  triangles,  result  in  diminished  accuracy.  In  the  work 
of  the  United  States  Coast  Survey  the  primary  triangulation  is 
made  up  chiefly  of  complete  quadrilaterals  and  partly  of  polygons 
having  an  interior  station.  In  these  figures  all  of  the  stations 
are  supposed  to  be  occupied  with  the  triangulation  instrument, 
but  for  secondary  and  tertiary  triangulation  some  stations  may 
be  left  unoccupied. 

8.  Strength  of  Figure. 
In  deciding  which  of  several  possible  triangulation  schemes 

should  be  adopted  it  is  essential  to  inspect  the  chain  of  triangles 
with  a  view  to  ascertaining  which  is  the  strongest  geometric 
figure,  that  is,  which  one  will  give  the  calculated  length  of  the 
final  Hne  with  the  least  error  due  to  the  shape  of  the  triangles. 

An  estimate  of  the  uncertainty  in  the  computed  side  of  a  tri- 
angle is  given  by  its  probable  error  as  found  by  the  method  of  least 

squares.  The  square  of  the  probable  error  {p)  of  a  triangle  side 
as  computed  through  a  chain  of  triangles  is  given  by  the  equation 
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in  which  d  is  the  probable  error  of  an  observed  direction,  Nd  is  the 

number  of  directions  observed,  Nc  is  the  number  of  geometric 

conditions  that  must  be  satisfied  in  the  figure,  and  5^  and  65  are 

the  differences  in  the  log  sines  corresponding  to  a  difference  of  1" 
in  the  angles  A  and  B,  A  being  opposite  the  known  side  and  B 

opposite  the  computed  side.    A  and  B  are  known  as  the  distance 

angles.    The  ]x  indicates  that  the  quantity  in  brackets  is  to  be 

computed  for  each  triangle  in  the  chain  and  the  sum  of  these 

Nd  —  N numbers  used  in  the  formula.     The  factor  — — — -  depends  upon 

the  kind  of  figure  chosen  and  the  factor  ̂   [8a^  +  5a5b  +  5^^] 
depends  upon  the  shape  of  the  triangles  of  which  the  figure  is 

composed;  hence  the  product  of  the  two  is  a  measure  of  the 

strength  of  figure  and  is  independent  of  the  precision  with  which 

the  angles  themselves  are  measured.  The  strength  R  of  any 

figure  is  therefore  given  by  the  equation 

R  =  ̂^^^X[8a'  +  8a8s  +  8s'1  [a] 
The  smaller  the  value  of  this  product  the  more  favorable  the 

geometric  conditions,  and  the  stronger  the  figure. 

If  the  value  of  this  product  be  computed  for  every  possible 

route  through  the  triangulation  system,  there  will  result  a  mini- 
mum value  (i?i)  for  the  best  chain  of  triangles,  a  second  best 

value  {R2),  and  a  third  and  fourth,  and  so  on.  It  will  be  found 

that  the  chain  of  triangles  having  the  greatest  influence  in  fixing 

the  length  of  the  final  line  is  that  corresponding  to  Ri,  or  the  best 

chain.  The  second-best  chain  will  have  some  influence,  and  the 

third  and  fourth  correspondingly  less.  Hence,  in  choosing  be- 
tween two  or  more  possible  systems  of  triangulation  which  join  a 

given  base  with  some  specified  line,  that  route  having  the  smallest 

Ri  is  to  be  preferred,  unless  Ri  proves  to  be  nearly  the  same  for 

the  different  routes,  in  which  case  that  chain  having  the  smallest 
Ri  would  be  chosen. 

As  an  example  of  the  way  in  which  the  preceding  method  would 



8      GEODESY  AND   GEODETIC  SURVEYING  —  TRIANGULATION 

be  applied,  take  the  case  of  the  quadrilateral  shown  in  Fig.  3. 

Assuming  the  base  AB  to  be  already  fixed  in  direction,  the  point 

C  is  then  determined  by  observing  the  new-  directions  AC  and 
BC.  D  is  fixed  by  the  directions  AD  and  BD.  In  addition  to 

these  four  the  directions  CB,  CA,  CD,  DC,  DB,  DA  are  all  ob- 
served.    This  gives  10  observed  directions  as  the  value  of  Na- 

Fig.  3. 

In  determining  the  number  of  geometric  conditions  it  is  seen  that 

there  are  four  triangles,  and  that  in  each  triangle  the  sum  of  the 

three  angles  must  equal  a  fixed  amount,  180°  +  the  spherical 
excess  of  that  triangle.  It  will  be  found,  however,  that  if  any 

three  of  these  triangles  are  made  to  fulfill  these  conditions,  the 

fourth  will  necessarily  do  so,  and  hence  is  not  really  independent; 

in  other  words,  there  are  but  three  conditions  dependent  upon 

the  closure  of  the  triangles.  In  addition  to  these  three  angle 

conditions  there  is  also  a  distance  check;  that  is,  the  angles  must 

be  so  related  that  the  computed  length  of  side  CD  is  the  same,  no 

matter  which  pair  of  triangles  is  used  in  making  the  computation. 

The  angles  of  the  triangle  may  in  each  case  add  up  to  the  correct 

amount,  and  yet  the  figure  will  not  be  a  perfect  quadrilateral 
unless  this  last  condition  is  fulfilled.  There  are  then,  in  all,  four 

geometric  conditions  existing  among  the  angles  {Nc  =  4). 
Therefore  the  factor  for  the  completed  quadrilateral  is 

Nd-  Nc  ̂   io_-^  ̂   ̂ ^ 
Nd  10 
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In  the  triangle  ADB  the  distance  angles  for  computing  the 

diagonal  are  DAB  and  ADB,  that  is,  71°  and  71°.  The  difference 
for  i"  for  71°  is  0.72  in  units  of  the  6th  decimal  place.  The 
quantity  in  brackets  in  the  formula  is  therefore  (0.52  +  0.52  + 

0.52)  =  1.56,  or  2  to  the  nearest  unit.  In  Table  I  these  numbers 

are  given  for  all  combinations  of  angles  which  will  occur  in  prac- 
tice, so  that  this  factor  may  be  found  at  once  by  entering  the  table 

with  the  two  distance  angles.  For  the  triangle  BDC  the  distance 

angles  for  computing  the  side  DC  are  93°  and  38°,  the  tabular 
number  being  7.  For  this  chain  of  triangles,  then,  Ri  =  0.6  X 

(2  +7)  =  5.4.  For  triangle  BAG  the  angles  are  76°  and  62°, 

and  the  number  equals  2.  For  triangle  DC  A  the  angles  are  120° 

and  29°,  and  the  number  equals  11.  Therefore  R2  =  0.6  X  13  = 
7.8.  If  we  compute  CD  through  the  triangles  ACB  and  DCB, 

we  find  R3  =  15.6.  Using  triangles  DBA  and  DC  A,  R4  =  30.6. 
In  comparing  the  strength  of  this  quadrilateral  with  that  of  any 

other  figure,  reliance  would  be  placed  mainly  upon  Ri  =  5.4  and 

partly  upon  R2  =  7.8. 
Na  —  N 

Following  are  the  values  of  factor   — — -  for  several  figures 

frequently  used  in  triangulation : —  single  triangle,  0.75;  quad- 
rilateral, 0.60;  quadrilateral  with  one  station  on  fixed  Une 

not  occupied,  0.75;  quadrilateral  with  one  station  not  on  fixed 

hne  not  occupied,  0.71;  triangle  with  interior  station,  0.60;  tri- 
angle with  interior  station,  one  station  on  fixed  line  not  occupied, 

0.75;  triangle  with  interior  station,  one  station  not  on  fixed  line 

not  occupied,  0.71;  four-sided  figure  with  interior  station,  0.64; 

five-sided  figure  with  interior  station,  0.67;  six-sided  figure  with 

interior  station,  0.68.  (For  additional  cases  see  General  In- 
structions for  the  Field  Work  of  the  Coast  and  Geodetic  Survey, 

1908;  or  Special  Publication  No.  26.) 
9.  Number  of  Conditions  in  a  Figure. 

In  determining  the  number  of  conditions  in  any  figure  it  is  well 

to  proceed  by  plotting  the  figure  point  by  point,  and  to  write 

down  the  conditions  as  they  arise,  but  it  will  be  of  assistance  to 



lO     GEODESY  AND   GEODETIC  SURVEYING  —  TRIANGULATION 

have  a  check  on  the  results  obtained  by  this  process.  If  n  rep- 
resents the  total  number  of  angles  measured,  and  5  the  number 

of  stations,  then,  since  it  requires  two  angles  to  locate  a  third 

point  from  the  base  line,  two  more  to  locate  a  fourth  point  from 

any  two  of  these  three  points,  and  so  on,  the  number  of  angles 

required  is  2  (5  —  2);  and  since  each  additional  angle  gives  rise 
to  a  condition,  the  number  of  conditions  will  equal  the  number 

of  superfluous  angles,  or 

Nc  =  n  —  2  {s  —  2) 
=  n  —  2  s  -\-  4. 

For  example,  in  a  quadrilateral  in  which  one  station  is  unoccupied 

there  are  six  angles  measured,  and  iVc  =  6  —  8+4  =  2. 
The  number  of  conditions  may  also  be  found  from  the  equation 

iVc  =  2  /  -  /i  -  3  5  +  5„  +  4, 

where  /   =  the  total  number  of  lines, 

/i  =  the  number  of  Unes  sighted  in  one  direction  only, 
s  =  the  total  number  of  stations, 

and      Su  —  the  number  of  unoccupied  stations. 

In  the  preceding  example  this  equation  becomes 

iVc  =  12  -  3  -  12  +  I  +  4  =  2. 

10.   Allowable  limits  of  i?i  and  Rq. 

In  the  primary  triangulation  of  the  United  States  Coast  and 

Geodetic  Survey,  the  extreme  limits  for  Ri  and  R2  between  base 

nets  are  25  and  80,  respectively.  These  are  reduced  to  15  and  20 

if  this  does  not  increase  the  cost  over  25  per  cent.  For  secondary 

triangulation  the  limits  for  Ri  and  R2  are  50  and  150;  these  are 

reduced  to  25  and  80  if  the  cost  is  not  more  than  25  per  cent 

greater.  For  tertiary  triangulation  the  50  and  150  limit  may  be 

exceeded  if  it  appears  necessary.  As  stated  in  Art.  6,  when  Ri 

has  accumulated  to  130  between  bases,  a  new  base  line  should 

be  introduced  as  a  check  on  the  accuracy  of  the  calculated  lengths. 

If  the  character  of  the  country  is  such  that  a  base  cannot  be 

located  at  this  point,  Ri  may  be  increased  to  200  if  necessary. 
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11.  Reconnoissance. 

The  work  of  planning  the  system  is  in  many  respects  the  most 
important  part  of  the  project  and  demands  much  experience  and 
skill.  Upon  the  proper  selection  of  stations  will  depend  very 
largely  the  accuracy  of  the  result,  as  well  as  the  cost  of  the  work. 

No  amount  of  care  in  the  subsequent  field-work  will  fully  com- 
pensate for  the  adoption  of  an  inferior  scheme  of  triangulation. 

Three  points  in  particular  will  have  to  be  kept  in  mind  in  planning 

a  survey:  (i)  the  "strength"  of  the  figures  adopted;  (2)  the  dis- 
tribution of  the  points  with  reference  to  the  requirements  of  the 

subsequent  detail  surveys;  and  (3)  the  cost  of  the  work.  In  de- 
ciding which  stations  to  adopt  it  is  desirable  to  make  a  prelimi- 

nary examination  of  all  available  data,  such  as  maps  and  known 
elevations.  If  no  map  of  the  region  exists,  a  sketch  map  must  be 
made  as  the  reconnoissance  proceeds.  While  much  information 

may  be  obtained  from  such  maps  as  are  available,  the  final  de- 
cision regarding  the  adoption  of  points  must  rest  upon  an  exami- 
nation made  in  the  field.  All  lines  should  be  tested  to  see  if  the 

two  stations  are  intervisible.  This  may  be  done  by  means  of 
field  glasses  and  heUotrope  signals.  In  cases  where  the  points 
are  not  intervisible,  owing  to  intervening  hills  or  to  the  curvature 

of  the  earth's  surface,  it  will  be  necessary  to  determine  approxi- 
mately, by  means  of  vertical  angles  or  by  the  barometer,  the 

elevation  of  the  proposed  stations  and  of  as  many  intermediate 
points  as  may  be  required,  and  then  to  calculate  the  height  to 
which  towers  will  have  to  be  built  in  order  to  render  the  proposed 
stations  visible.  If  the  height  of  the  towers  is  such  as  to  make 
the  cost  prohibitive,  the  line  must  be  abandoned  and  another 
scheme  of  triangles  substituted. 

12.  Calculation  of  Height  of  Observing  Tower. 

After  determining  the  elevations  of  the  stations  and  the  inter- 
vening hills  along  a  line,  as  well  as  the  distances  between  them, 

the  height  of  the  tower  required  may  be  found  by  the  following 

method:  The  curvature  of  the  earth's  surface  causes  all  points 
to  appear  lower  than  they  actually  are.    A  hill  appearing  to  be 
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exactly  on  the  level  of  the  observer's  eye  is  in  reaUty  higher  above 
sea-level  than  the  observer.  The  hght  coming  from  the  hill  to 

the  observer's  eye  does  not,  however,  travel  in  a  straight  line, 
but  is  bent,  or  refracted,  by  the  atmosphere  into  a  curve  which 
is  concave  downward  and  is  approximately  circular.  The  result 
is  that  the  object  appears  higher  than  it  would  if  there  were  n© 
refraction.  The  amount  of  the  apparent  change  in  height  due 

to  refraction  is  found  to  be  only  about  one-seventh  part  of  the 
apparent  depression  due  to  curvature.  Since  these  two  correc- 

tions always  have  opposite  signs  and  have  a  nearly  fixed  relation 

to  each  other,  it  is  sufficient  in  prac- 
tice to  calculate  the  correction  to  the 

difference  in  height  due  to  both  cur- 
vature and  refraction,  and  to  treat 

the  combined  correction  as  though  it 
were  due  to  curvature  alone,  since  the 
curvature  correction,  being  the  larger, 

always  determines  which  way  the  total 
correction  shall  be  apphed. 

In  Fig.  4,  A  is  the  position  of  the 

observer,  looking  in  a  horizontal  di- 
rection toward  point  B.    BC  is  the  amount  by  which  B  appears 

lower  than  it  really  is,  since  A  and  C  are  both  at  the  same  eleva- 
tion (sea-level). 

By  geometry,  BC  :  AB  =  AB  :  BD 

-2 

Fig. 

or 

BC  = 
AB 
BD 

Since  BC  is  small  compared  with  BD,  the  percentage  error  is 
small  if  we  call  AB  =  AC  and  BD  =  the  diameter  of  the  earth, 
whence 

(dist.)^ BC  = diameter (approx.). 

The  hght  from  B'  (Fig.  5)  follows  the  dotted  curved  path  which 
is  tangent  to  the  sight  Hne  at  A .    The  observer  therefore  sees  5' 
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at  5.  In  order  to  find  the  relation  of  BB'  to  BC  it  is  convenient 
to  employ  w,  the  coefficient  of  refraction,  which  is  defined  as  the 
number  by  which  the  central  angle  AOB 
must  be  multipHed  in  order  to  obtain  the 

angle  BAB'\  therefore 
angle  of  refraction  =  2  X  w  X  BAC. 

Since  these  angles  are  small,  distances  BB' 
and  BC  are  nearly  proportional  to  the  angles 
themselves,  hence 

BB' :  BC  =  BAB' :  BAC 

and  BB'  =  2mx  BC. 

The  net  correction  (B'C  =  h)  is  the  difference 
between  the  two,  that  is 

h  =  BC  -  BB' 
(dist.)2  (dist.)' 
diam.  diam. 

Fig.  5. 

(dist.)^ 
diam. (i  —  2  m). 

The  mean  value  of  m  is  found  to  be  about  0.070.  Substituting 

this,  and  the  value  for  the  earth's  diameter,  and  reducing  h  to 
feet,  we  have 

h  (in  feet)  =  K^  (in  miles)  X  0.574, 

or  K  (in  miles)  =  \^h  (in  ft.)  X  1.32, 
in  which  K  is  the  distance  in  miles.  Values  of  h  and  K  for 

distances  up  to  60  miles  will  be  found  in  Table  II. 

As  an  example  of  how  this  formula  is  applied,  suppose  it  is  de- 
sired to  sight  from  A  to  B  (Fig.  6),  and  that  a  hill  C  obstructs 

the  line.  At  A  draw  a  horizontal  line  AD  and  also  a  curve  AE 

parallel  to  sea-level.     The  distance  from  the  tangent  to  the  dotted 

curve  at  C  is  —.   ,  which  for  46  miles  is  141 1.9  ft.     Similarly, 

at  5, 
diam. 

diam. 

=  4708.0  ft.    But  since  the  ray  of  light  from  B  to  A 



14     GEODESY  AND   GEODETIC  SURVEYING— TRIANGULATION 

is  curved,  B  is  seen  at  B' ,  or  659.2  ft.  nearer  to  the  tangent  AD) 
similarly,  C  appears  to  be  197.7  ft.  nearer  the  tangent  line. 
Therefore,  in  deciding  the  question  of  visibility  we  may  compute 
the  combined  correction  and  say  at  once  that  the  curve  at  C  is 

■^00 

Fig.  6. 

1 2 14.2  ft.  below  AD,  and  at  B  is  4048.8  ft.*  below  AD.  Adding 
2300  ft.  (the  elevation  of  ̂ )  to  each  of  these  values  of  h,  we  obtain 

the  (vertical)  distances  from  the  tangent  line  down  to  sea-level, 
namely  3514.2  ft.  and  6348.8  ft.  at  C  and  B,  respectively.    Sub- 

FlG.  7. 

tracting  the  elevations  of  C  and  B,  we  obtain  2464.2  ft.  and  4548.8 
ft.  as  the  distances  of  points  C  and  D  below  the  tangent  \\neAD. 
The  three  points  are  now  referred  to  a  straight  line  (the  tangent), 
and  the  question  of  visibility  is  determined  at  once  by  similar 

*  Since  the  table  extends  only  to  60  miles,  the  value  of  h  is  first  found  for  half 
the  distance  (42  mi.),  and  the  result  multiplied  by  4. 
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triangles.  In  Fig.  7  it  will  be  seen  that  the  straight  line  from  B' 
to  ̂   is  II  X  4548.8  =  2491.0  ft.  below  the  tangent  (opposite  C), 

and  consequently  is  26.8  ft.  lower  than  C.  Twenty-seven-foot 

towers  would  therefore  barely  make  B'  visible  from  ̂ .  In  order 
to  avoid  the  atmospheric  disturbances  near  the  ground  at  C  the 

towers  would  really  have  to  be  carried  up  to  a  height  of  40  ft.  or 

even  more.  Of  course  the  hne  of  sight  is  not  actually  straight 

between  A  and  B,  as  shown  in  the  diagram;  but  this  method  of 

solving  the  problem  gives  the  same  result  as  though  the  curva- 
ture and  refraction  were  dealt  with  separately  and  the  sight  Hnes 

all  drawn  curved. 

If  it  were  required  to  find  the  heights  of  towers  necessary  to 

make  it  possible  to  sight  from  A  across  a  water  surface  to  D,  we 

should  proceed  as  follows :  Suppose  the  elevation  of  A  above  the 

water  surface  is  20  ft.  and  that  of  D  is  10  ft.  From  A  we  may 

draw  a  line  tangent  to  the  water-level  at  T  (Fig.  8).     Knowing 

Fig.  8. 

the  height  of  yl,  we  may  find  the  distance  AT  from  Table  11. 

Subtracting  this  distance  from  AD,  we  find  the  distance  TD. 

From  this  latter  distance  we  may  compute  the  height  of  the  tan- 
gent line  above  the  surface  at  D,  and,  finally,  knowing  the  height 

of  D,  we  find  the  distance  of  D  below  the  tangent  line.  Now 

that  the  points  are  referred  to  a  straight  line,  we  have  at  once 

the  height  of  tower  required  on  D  alone.  If  the  two  towers  are 

to  be  of  equal  height,  we  may  estimate  the  required  height 

closely  and  then  verify  the  result  by  a  second  computation,  add- 
ing the  assumed  height  of  the  tower  to  the  elevation  of  A . 

If  it  is  desired  to  keep  the  line  of  sight  at  least  10  ft.  above  the 

surface  at  every  point  in  order  to  avoid  errors  due  to  excessive 

refraction,  we  may  draw  a  parallel  curve  10  ft.  above  the  water 

surface  and  solve  the  problem  as  before.     The  difference  in  radii 
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of  the  two  curves  will  not  have  an  appreciable  effect  on  the  com- 
puted values  of  h  and  K. 

13.   Method  of  Marking  Stations. 

The  importance  of  permanently  marking  a  trigonometric  sta- 
tion and  connecting  it  with  other  reference  marks  cannot  be 

easily  overestimated,  since  by  this  means  we  may  avoid  the  costly 
work  of  reproducing  triangulation  points  which  have  been  lost. 
When  the  station  is  on  ledge,  the  point  is  best  marked  by 

making  a  fairly  deep  drill  hole  and  setting  a  copper  bolt  into  it. 
A  triangle  is  chiseled  around  the  hole  as  an  aid  in  identifying  the 
point.  Other  drill  and  chisel  marks  should  be  made  in  the 
vicinity,  and  their  distances  and  directions  from  the  center  mark 
determined;  these  will  serve  as  an  aid  in  recovering  the  position 
of  the  center  mark  in  case  it  is  lost. 

If  the  station  is  on  gravel  or  other  soft  material,  the  station 

mark  on  the  surface  is  usually  a  stone  or  concrete  post,  set  deep' 
enough  to  be  unaffected  by  frost  action  and  having  a  drill  hole 

or  other  distinguishing  mark  on  top.  There  is  usually  also  a  sub- 
surface mark,  such  as  a  second  stone  post,  a  bottle  or  a  circular 

piece  of  earthenware,  placed  some  distance  below  the  surface 
mark,  to  preserve  the  location  in  case  the  latter  is  lost.  The 
Coast  and  Geodetic  Survey  and  the  United  States  Geological 
Survey  use  cast  metal  discs  provided  with  a  shaft  ready  to  place 
in  concrete,  and  bearing  an  inscription  giving  the  name  of  the 
organization  and  other  information.     (See  Figs.  9a  and  9b.) 

The  following  description  and  sketch  are  given  to  illustrate  a 
description  of  a  triangulation  station. 

Triangtilation  Station  "  Beacon  Rock." 
The  station  is  in  the  town  of    ,    ,  on  a  hill  on  the 

property  of  John  Smith  situated  on  the  north  side  of  the  road  from  Bourne  to 
Canterbury.  It  is  reached  by  a  trail  which  leaves  the  road  at  a  point  about 

250  meters  west  of  Smith's  house.  It  is  about  225  meters  by  trail  to  the 
station.  The  point  is  marked  by  a  one-inch  copper  bolt  set  in  a  drill  hole  in 
the  ledge  and  with  a  triangle  chiseled  around  it,  and  by  witness  marks  as  shown 

in  the  accompanying  sketch.  The  hill  is  somewhat  wooded  to  the  north  and 
west,  but  there  is  a  clear  view  in  all  other  directions. 



1"'IG.  ga.     Triangulation  station  JNlark. 
(Coast  and  Geodetic  Survey.) 

Fig.  gb.     Reference  Mark. 
(Coast  and  Geodetic  Survey.) 

(17) 
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DISTANCES  AND  AZIMUTHS  FROM   CENTER 

Station.  Azimuth.  Dist.  to  drill  hole. 

Holder    2 1°  50'  71.3m. 
Bear  Hill    121°  16'  41.0  m. 

Witness  Mark    185°  30'  21 .  47  m. 

Dayton    259°  10'  loi .  2  m. 
Witness  Mark    283°  05'  78 .  34  m. 

Sheep  Id    325°  40'    

Fig.  10.     Sketch  of  Triangulation  Station. 

14.   Signals,  Tripods. 
In  order  that  the  exact  position  of  the  station  may  be  visible 

to  the  observer  when  measuring  the  angles,  a  signal  of  some  sort 
is  erected  over  the  station.  For  comparatively  short  lines,  less 
than  about  15  miles,  the  tripod  signal  is  often  sufficient.  (See 
Fig.  II.)     It  is  not  expensive  to  build,  saves  the  cost  of  a  man  to 
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attend  signal  lights  (as  is  necessary  with  heliotropes  or  acetylene 

lights),  and  permits  setting  the  instrument  over  the  station  with- 

out removing  the  signal.  It  usually  consists  of  a  mast  of  4''  X  4" 
spruce,  with  legs  of  about  the  same  size.  Three  horizontal  braces 

of  smaller  dimensions  (2"  X  3")  tie  the  mast  to  the  legs,  and 
three  longer  horizontal  braces  are  nailed  to  the  legs.     If  the 

Fig.  II.    Tripod  Signal. 

signal  is  very  large,  additional  sets  of  braces  may  be  put  on,  to 
give  greater  stiffness.  The  size  of  the  mast  may  be  increased  by 

nailing  on  one7inch  boards,  giving  a  mast  6"  X  6". 
15.  Heliotropes. 

When  sighting  over  longer  Unes  it  is  necessary  to  use  heliotrope 

signals  if  observing  by  day,  and  acetylene  lights  if  ̂observing  by 
night.  The  heliotrope  is  simply  a  plane  mirror  with  some  device 
for  pointing  it  so  that  reflected  sunlight  will  reach  the  distant 
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Station.  The  two  more  common  heliotropes  are  (i)  the  one  in 

which  the  light  is  directed  through  two  circular  rings  of  slightly 
different  diameters  (Fig.  12),  and  (2)  that  known  as  the  Steinheii 
heliotrope  (Fig.  13). 

The  ring  heliotrope  consists  essentially  of  two  circular  metal 
rings,  of  slightly  different  diameters,  mounted  on  a  frame,  and  a 
mirror  mounted  in  Kne  with  the  two  rings  in  such  a  manner  that 
it  can  be  moved  about  two  axes  at  right  angles  to  each  other. 
For  convenience  in  observing  distant  stations  these  two  rings  and 
the  mirror  are  often  mounted  on  the  barrel  of  a  telescope.    The 

Fig.  12.    Heliotrope. 

rings  should  be  so  mounted  that  the  line  between  the  centers  of 

the  rings  may  be  adjusted  parallel  to  the  line  of  sight  of  the  tele- 
scope. In  using  the  heliotrope  the  axis  of  the  rings  is  pointed  by 

means  of  threads  which  mark  the  center  of  the  openings,  or  by 
means  of  the  telescope  itself  after  the  axis  of  rings  and  the  line  of 

sight  of  the  telescope  have  been  made  parallel.  Since  the  sun's 
apparent  diameter  is  about  0°  32',  the  angle  of  the  cone  of  rays 
reflected  from  the  mirror  is  also  0°  32'.  It  is  not  necessary, 
therefore,  to  point  the  beam  of  light  with  great  precision.  If  the 
central  ray  is  nearly  a  quarter  of  a  degree  to  one  side  of  the 
station,  there  will  still  be  some  light  visible  to  the  observer  at  the 

distant  station.  On  account  of  the  rapidity  of  the  sun's  motion 
it  is  necessary  to  i;eset  the  heliotrope  mirror  at  intervals  of  about 
one  minute. 
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Fig.  13a.     Steinheil  Heliotrope. 

Fig.  13b. 
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The  Steinheil  heliotrope  consists  of  a  mirror  with  both  faces 
ground  plane  and  parallel  and  so  mounted  that  it  can  be  moved 
about  two  axes  at  right  angles  to  each  other.  One  of  these  axes 
is  coincident  with  that  of  a  cylindrical  tube  which  contains  a  small 
biconvex  lens  and  a  white  surface  (usually  plaster  of  Paris)  for 
reflecting  light.  This  tube  may  be  moved  about  two  other  axes 
at  right  angles  to  each  other.  A  small  circular  portion  of  the 
glass  in  the  center  of  the  mirror  is  left  unsilvered,  so  that  light 
may  pass  through  the  glass  plate  down  into  the  tube. 

In  pointing  the  Steinheil  heliotrope  the  cylindrical  tube  con- 
taining the  lens  must  be  pointed  toward  the  sun,  so  that  the  light 

which  passes  through  the  hole  in  the  mirror  will  pass  through  the 
lens,  and,  after  reflection  from  the  plaster  surface,  will  again  pass 
through  the  lens  to  the  back  surface  of  the  mirror,  there  to  be 
partly  reflected  and  partly  transmitted  through  the  glass. 
Keeping  the  tube  in  this  position,  the  mirror  itself  must  be  so 
turned  that  the  spot  of  light  made  visible  by  this  last  reflection 
will  appear  to  cover  the  hill  or  station  to  which  the  Ught  is  to  be 
sent. 

One  form  of  heliotrope,  in  use  by  the  Coast  Survey,  called  a 
box  heliotrope,  consists  of  a  pair  of  rings  with  a  mirror  mounted 
behind  them,  and  with  sights  above  the  rings  for  pointing.  A 
telescope  is  mounted  to  one  side  of  and  parallel  to  the  heliotrope. 
The  various  parts  remain  in  position  in  the  box  when  in  use. 

(Fig.  14.) 
The  size  of  mirror  used  in  any  heliotrope  must  be  regulated 

according  to  the  length  of  Hne  and  the  atmospheric  conditions. 
Most  heliotropes  are  provided  with  some  arrangement  for  varying 
the  size  of  the  opening  through  which  the  light  passes.  If  the 

exposed  portion  of  the  mirror  subtends  an  angle  of  about  o."2 
the  amount  of  light  will  be  sufhcient  for  average  conditions. 
This  is  equivalent  to  making  the  diameter  of  the  opening  about 

one-half  inch  for  each  ten  miles.  Different  atmospheric  condi- 
tions will  require  different  openings. 

All  heliotropes  are  provided  with  a  second  mirror,  usually 
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larger  than  the  first,  called  the  back  mirror;  this  is  to  be  used 

whenever  the  angle  between  the  sun  and  the  station  is  too  great 

to  permit  sending  the  ray  by  a  sing  e  reflection.  The  back 

mirror  is  set  so  as  to  throw  light  onto  the  first  mirror  and  the 

heliotrope  is  then  adjusted  to  the  reflection  of  the  sun  as  it 

appears  in  the  back  mirror. 

Fig.  14.     Box  Heliotrope. 
(Coast  and  Geodetic  Survey.) 

16.  Acetylene  Lights. 

In  the  triangulation  along  the  ninety-eighth  meridian,  in  1902, 
the  Coast  and  Geodetic  Survey  experimented  with  acetylene 

lights  for  triangulation  at  night.  These  experiments  were  suc- 

cessful, and,  owing  to  the  fact  that  the  work  could  usually  pro- 
ceed regardless  of  clouds,  the  use  of  lights  resulted  in  greater 
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economy  than  observations  by  daylight.  The  lamps  used  at 

first  were  ordinary  acetylene  bicycle  lamps  remodeled  in  the 

instrument  division  of  the  Survey.  The  front  door  of  the  lamp 

was  removed  and  the  ordinary  lens  replaced  by  a  pair  of  condens- 
ing lenses  5  inches  in  diameter.  When  in  use  the  lamp  is  secured 

to  the  platform  by  means  of  a  screw,  and  may  be  moved  both  in 

Fig.  15.    i^cetylene  Signal  Lamp. 
(Coast  and  Geodetic  Survey.) 

altitude  and  in  azimuth.  A  small  tube  is  fastened  to  the  top  of 

the  lamp  for  pointing  it  toward  the  observer's  station.  The 
entire  outfit,  including  a  5-lb.  can  of  carbide,  weighs  but  21^  lbs. 
(See  Coast  and  Geodetic  Survey  Report  for  1903,  p.  824.)  The 

recent  practice  of  the  Survey  is  to  use  automobile  lamps  in  place 

of  the  bicycle  lamps.     (Fig.  15.) 
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17.  Towers. 
Where  a  line  is  obstructed  by  hills  or  woods,  or  where  the 

curvature  of  the  earth  is  sufficient  to  make  the  station  invisible, 

it  becomes  necessary  to  construct  towers.  If  there  is  much 
heavy  timber  about  the  station,  placing  the  instrument  station 

Fig.  16.    Eighty-foot  Tower. 
(Coast  and  Geodetic  Survey.) 

on  the  ground  may  necessitate  so  much  cutting  that  it  will  be 
more  economical  to  construct  a  tower  than  to  cut  the  timber. 

The  form  of  tower  now  used  by  the  United  States  Coast  Survey 
is  very  Hght  and  slender  as  compared  with  the  older  ones.  This 
kind  of  tower  (Fig.  16)  admits  of  more  rapid  construction  and 
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can  be  built  at  a  lower  cost;  it  is  sufficiently  rigid  to  withstand 
all  ordinary  storms.  The  manner  of  framing  the  tower  is  shown 
in  the  cut  (Fig.  17).  When  the  ties  are  nailed  on,  the  legs  are 
sprung  slightly  into  the  form  of  a  bow,  thus  giving  additional 
stiffness  to  the  structure. 

One  side  of  the  inner  tripod,  which  is  to  support  the  instrument, 
is  first  framed  on  the  ground.  This  side  and  the  third  leg  of  the 
tripod  are  raised  into  position  by  a  fall  and  tackle  and  a  derrick, 
which  may  be  a  tree  or  a  section  of  one  of  the  legs  of  the  outer 

scaffold.  The  derrick  should  be  at  least  two-thirds  the  height 
of  the  piece  to  be  raised.  After  the  tripod  is  raised  and  all  braces 
nailed  on,  it  is  itself  used  as  a  derrick  for  hoisting  the  two  opposite 
frames  of  the  outer  scaffold  into  position.  The  ties  and  braces 
of  the  other  two  sides  are  then  nailed  in  place.  It  should  be 
observed  that  the  inner  and  outer  structures  are  entirely  separate, 
so  that  the  movement  of  the  observer  on  the  platform  of  the 
scaffold  will  not  disturb  the  instrument.  The  legs  of  the  tripod 
and  the  scaffold  are  anchored  by  nailing  them  to  foot  pieces  set 

underground.  The  outer  tower  is  guyed  with  wire  as  a  protec- 
tion against  collapse  in  high  winds. 

This  kind  of  signal  saves  lumber,  transportation,  and  cost  of 
construction;  it  has  a  small  area  exposed  to  the  action  of  the 
wind;  the  short  ties  have  the  effect  of  reducing  the  vibration  due 
to  wind,  which  is  troublesome  in  large  towers;  the  light  keeper 
is  placed  above  the  observer  (10  ft.  or  so)  and  can  operate  his 

lights  without  interfering  with  the  observations.  Another  ad- 
vantage of  these  towers  is  that  the  amount  of  twisting  due  to  the 

sun's  heating  is  found  to  be  exceedingly  small.  (For  further 
details  consult  Coast  Survey  Report  for  1903,  p.  829.) 

The  United  States  Lake  Survey  now  uses  a  tower  constructed 

entirely  of  gas  pipe,  which  has  proved  to  be  more  economical 
than  timber.  It  is  put  together  in  sections  and  hoisted  as  it  is 
built.  The  upper  part  of  the  structure  is  built  first  and  is  then 
hoisted  from  the  ground  by  means  of  tackles^  the  next  section  is 
then  added  on,  all  the  work  being  done  from  the  ground.    This 
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0'  stand  for  lights 
3'    Top  floor 5'.d0 

SIDE  OF  60  FT.  SCAFFOLD SIDE  OF  60  FT.  TRIPOD 

22l90 

PLAN  OF  SCAFFOLD  AND  TPIPOD 

Scale  of  Feet 

l""l""l   r 

Fig.  17.    Framing  plan  of  60-ft.  Tower. 
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kind  of  tower  is  easy  to  construct,  and  the  material  is  portable; 
the  area  exposed  to  wind  is  very  small. 

Figs.  1 8  and  19  illustrate  small  towers  built  of  green  poles  cut 
near   the   station.     These  towers   were   erected  to  enable  the 

observer  to  see  over  the  dense  growth 
of  timber.  In  the  tower  shown  in 

Fig.  19  standing  trees,  stripped  of 
their  branches,  were  utilized  for  two 
of  the  legs  of  the  outer  scaffold. 

18.  Reconnoissance  for  Base  Line. 

With  the  Invar  tape  apparatus,  to 
be  described  in  Chapter  II,  base  lines 
may  now  be  measured  over  much 
rougher  ground  than  was  formerly 
possible,  when  bar  apparatus  was 
used;  still  it  is  advantageous  to  have 
the  base  line  located  in  as  smooth 

and  level  country  as  possible,  provided 

this  does  not  require  weak  triangula- 
tion  to  connect  the  base  with  the  main 

scheme  of  triangles.  The  network  of 

triangles  required  in  making  this  con- 
nection should  be  selected  with  the  same  care  and  according  to 

the  same  principles  as  was  described  for  primary  triangulation. 
In  some  cases  it  is  found  practicable  to  use  the  side  of  a  primary 
triangle  for  the  base  hne.  For  example,  in  the  triangulation 
extending  from  Texas  to  CaHfornia  the  Stanton  base,  which  is 
one  of  the  primary  lines  (8  miles  in  length),  was  measured  directly 
with  the  tape  apparatus. 

Fig.  18.    Twenty-five-foot 
Tower  built  of  Green  Poles. 
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Fig.  19.     Forty-foot  Tower  built  on  trees  in  place. 



30     GEODESY  AND   GEODETIC  SURVEYING— TRIANGULATION 

PROBLEMS, 

Problem  i.  What  is  the  strength  of  the  quadrilateral  having  all  the  angles  equal 

to  45°  ?  In  case  one  station  on  the  base  is  not  occupied  with  the  instrument,  what 
is  the  strength ?     If  one  station  not  on  the  base  is  unoccupied,  what  is  the  strength? 

Problem  2.     Compare  the  strength  of  the  three  figures  given  in  Fig.  19a. 

D 

\A5° 

455^ a 

i5y 
45\ 

R 

Fig.  19a. 

Problem  3.  Three  hills  A,B,  and  C  are  in  a  straight  line.  The  distance  from  A 

to  B  is  10  miles  and  the  distance  from  5  to  C  is  15  miles.  The  elevations  are  A  = 

600  ft.,  B  =  550  ft.,  and  C  =  650  ft.  respectively.  Compute  the  height  of  a  tower 
to  be  built  on  C  the  top  of  which  will  just  be  visible  from  A . 

Problem  4.  Four  hills  A,B,C,  and  D  are  in  a  straight  line.  The  elevations  are 

A  =  810  ft.,  B  =  775  ft.,  C  =  1030  ft,  D  =  1300  ft.  respectively.  The  distances 
of  B,  C,  and  D  from  A  are  8  miles,  28  miles,  and  38  miles.  Find  the  height  of 
towers  on  A  and  D  to  sight  over  B  and  C  with  a  lo-ft.  clearance.  The  two  towers 
are  to  be  of  the  same  height. 

Problem  5.  What  angle  is  subtended  by  a  six-inch  mast  at  a  distance  of  twelve 
miles  ? 

Problem  6.  If  a  fourteen-inch  mirror  is  used  on  a  heliotrope  at  a  distance  of  150 
miles,  what  is  the  apparent  angular  diameter  of  the  Ught? 



CHAPTER  II 

BASE  LINES 

19.  Bar  Apparatus  for  Measuring  Bases. 

In  nearly  all  the  earlier  base-line  measurements  (up  to  about 
1885)  the  apparatus  employed  consisted  of  some  arrangement  of 
metal  bars.  Such  apparatus  was  capable  of  yielding  accurate 

results,  but  was  cumbersome  to  use;  consequently  the  base-line 
work  was  a  comparatively  expensive  part  of  the  survey.  An 

account  of  the  development  of  base-measuring  apparatus  will 

be  found  in  Clarke's  Geodesy  and  in  Jordan's  Vermessungskunde, 
Vol.  Ill;  descriptions  of  numerous  forms  used  in  this  country  will 
be  found  in  the  reports  of  the  superintendent  of  the  Coast  and 
Geodetic  Survey. 

20.  Steel  Tapes. 

Experiments  with  the  use  of  steel  tapes  for  base-line  measure- 
ments were  made  by  Jaderin  at  Stockholm  in  1885,  by  the 

Missouri  River  Commission  in  1886,  and  by  Woodward  on  the 
Coast  and  Geodetic  Survey  base  at  Holton,  Indiana,  in  1891. 
The  use  of  steel  tapes  for  this  purpose  was  attended  with  such 
success  that  for  twenty  years  they  were  very  generally  used,  and 
by  1900  they  had  almost  wholly  superseded  the  bar  apparatus 
in  this  country. 

The  greatest  practical  difficulty  encountered  in  the  use  of  steel 
tapes  for  precise  measurement  is  that  of  determining  the  true 

temperature  of  the  steel  when  making  the  measurements  in  sun- 
light. The  air  temperature,  as  indicated  by  ordinary  mercurial 

thermometers,  is  seldom  the  correct  temperature  for  the  tape, 
except  during  rainy  weather  or  at  night.  For  this  reason  it  was 

found  necessary  to  make  all  measurements  of  base-lines  at  night 
in  order  to  secure  the  required  accuracy. 

31 
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21.  Invar  Tapes. 

In  1906  the  Coast  Survey  made  a  series  of  tests  on  six  primary 

base-lines,  using  the  ordinary  steel  tapes  and  also  several  new  50- 
meter  tapes  made  of  an  alloy  of  nickel  and  steel  called  invar. 

This  alloy  was  discovered  by  C.  E.  Guillaume,  of  the  Interna- 

FiG.  20.     Invar  Tape  on  Reel. 

tional  Bureau  of  Weights  and  Measures,  Paris.  The  tapes  were 

made  by  J.  H.  Agar-Baugh,  of  London.  The  alloy  mentioned 
has  a  very  low  coefficient  of  expansion,  roughly  one-twenty-fifth 

that  of  steel,*  and  consequently  has  a  great  advantage  over  steel 

*  The  coefficient  of  steel  is  about  o.ooooii,  that  of  invar  is  about  0.0000004,  for i°C. 
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for  base-Kne  measurement.  The  metal  is  more  easily  bent  than 
steel,  but  with  proper  care  in  handling  the  tapes,  and  with  the 
use  of  fairly  large  reels,  there  is  little  difficulty  in  making  the 

measurements  and  in  securing  the  required  accuracy.  The  re- 
sults of  these  tests  on  the  invar  tapes  may  be  summed  up  as 

follows: 

Measurements  with  invar  tapes  may  be  made  during  daylight 

with  all  the  accuracy  demanded  in  base-line  work,  whereas 
measurements  with  steel  tapes  must  be  made  at  night  in  order  to 
secure  the  required  accuracy. 

In  working  by  dayhght  the  errors  of  observation  are  smaller 
and  the  party  can  make  greater  speed  than  when  working  at 
night. 

On  account  of  the  small  temperature  coefficient  of  the  invar 

tape  any  error  due  to  the  failure  of  the  thermometers  to  indicate 

the  true  temperature  of  the  tape  has  much  less  effect  on  the  com- 
puted length  when  the  measurements  are  made  with  invar  than 

when  they  are  made  with  steel. 
Since  it  is  not  necessary  to  standardize  the  invar  tape  in  the 

field,  as  was  always  done  with  the  steel  tape,  the  cost  of  measure- 
ments made  with  the  invar  is  materially  less  than  that  of  measure- 
ments made  with  steel. 

The  superiority  of  these  tapes  has  been  demonstrated  by  re- 
peated trials,  and  they  are  now  used  almost  exclusively  by  the 

Coast  Survey  in  making  base  measurements. 
22.   Accuracy  Required. 
It  is  found  that  there  is  little,  if  any,  advantage  in  measuring 

a  base-line  with  a  precision  greater  than  one  part  in  500,000, 
since  to  do  this  would  give  the  base-line  a  greater  precision  than 
could  be  maintained  in  the  angle  measurements.  There  is  little 
difficulty,  however,  in  obtaining  a  higher  precision;  the  bases 
measured  by  the  Coast  Survey  in  1906  and  1909  show  a  precision 
of  one  part  in  2,000,000  or  better.  It  is  customary  to  divide 
bases  into  sections  of  about  a  kilometer  in  length,  and  to  measure 
each  section  twice.     If  the  two  results  show  a  discrepancy  greater 
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than  20"""  y/~K  {K  being  the  number  of  kilometers  in  the  section), the  measurements  are  repeated  until  they  do  agree  within  this 

limit;  if  the  first  two  results  agree  within  this  Umit,  no  additional 

measurements  are  taken.  This  procedure  is  consistent  with  the 

requirement  that  the  base  be  measured  with  a  precision  of  at 

least  I  in  500,000,  but  that  no  attempt  be  made  to  increase  the 

precision  much  beyond  this  limit. 

23.  Description  of  Apparatus. 

The  invar  tapes  are  usually  about  53  meters  long,  with  two 

graduations  50  meters  apart.  In  some  tapes  a  length  of  one 

decimeter  at  each  end  of  the  50-meter  length  is  subdivided  into 
millimeters  for  convenience  in  reading.  Intermediate  points  on 

the  tape,  such  as  the  25  meter  point,  are  marked  by  single  lines. 

The  tape  is  about  \  inch  X  y^  inch  in  cross  section  and  weighs 

■about  25  grams  per  meter.  This  metal  is  softer  than  steel  and 
has  to  be  wound  on  a  reel  of  at  least  16  inches  diameter  in  order 

to  avoid  permanent  bends  in  the  tape  and  consequent  changes  in 

length.  (Fig.  20.)  In  use  it  is  supported  at  the  ends  and 

usually  at  one  intermediate  point.  The  tension  is  applied  by 

means  of  a  spring  balance  reading  to  25  grams,  the  tension 

ordinarily  used  being  15  kilograms.  An  apparatus  used  for 

applying  the  tension  and  similar  to  that  used  by  the  Coast  Survey 

is  shown  in  Fig.  21.  The  point  of  the  iron  bar  holding  the  spring 

balance  is  pushed  into  the  ground,  and  the  upper  end  is  moved 

right  or  left  to  ahgn  the  tape.  The  adjustable  clamp  makes  it 

possible  to  raise  or  lower  the  balance  so  as  to  bring  the  end  of  the 

tape  to  the  right  grade.  The  spring  balance  employed  is  a  com- 
mercial article  and  is  constructed  to  read  correctly  when  held  in  a 

vertical  position  and  with  the  weight  hung  on  the  hook.  When 

the  balance  is  used  in  a  horizontal  position,  the  true  tension  is 

greater  than  the  indicated  tension.  The  correction  to  be  applied 

to  the  scale  readings  is  found  by  suspending  known  weights  on  a 

cord  passing  over  a  pulley  and  secured  to  the  hook  of  the  balance 

when  held  in  a  horizontal  position.  The  thermometers  used  with 

this  apparatus  are  graduated  to  half  degrees  and  are  provided 
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Fig.  21.     Tension  Apparatus. 
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with  spring  clamps  so  that  they  may  be  readily  fastened  to  the 
tape  for  making  readings,  or  removed  from  it  when  it  is  being 
carried  forward. 

24.  Marking  the  Terminal  Points. 
The  ends  of  the  base  line  to  be  measured  are  marked  in  the 

same  manner  as  triangulation  points,  that  is,  by  bolts  set  in  drill 
holes  in  stone  monuments  or  by  special  castings  set  in  concrete; 
the  points  are  tied  in  by  several  measurements  to  prevent  the 

position  being  lost.  There  is  usually  also  a  sub-surface  mark 
(see  Art.  13),  Intermediate  points  on  the  line  are  often  marked 
by  stone  or  concrete  posts. 

25.  Preparation  for  the  Measurement. 
The  first  step  in  measuring  the  base  is  to  run  the  line  out 

roughly  with  transit  and  tape  and  clear  the  ground  from  obstruc- 
tions; at  the  same  time  the  measuring  stakes  are  set  in  position. 

These  may  be  ̂ '  X  4"  stakes  set  exactly  one  tape-length  apart 
and  high  enough  so  that  the  tape  is  everywhere  clear  of  the 
ground.  On  top  of  each  stake  is  placed  a  strip  of  copper  or  zinc 
upon  which  is  scratched  the  reference  marks  used  in  making  the 

measurements.  Next,  the  slope  of  each  tape-length  is  deter- 
mined by  taking  level  readings  on  the  tops  of  all  the  stakes.  The 

intermediate  stakes  (one  or  three  in  number)  are  set  in  line,  and 
nails  for  supporting  the  tape  are  placed  at  the  proper  grade. 

26.  Measuring  the  Base. 
The  actual  measurement  is  begun  by  stretching  the  tape  over 

the  first  pair  of  stakes;  the  zero  end  of  the  tape  is  placed  over  the 
end  mark  of  the  base,  either  by  means  of  a  transit  set  at  one  side 

of  the  line  or  by  a  special  device  called  a  cut-of  cylinder.  The 
tape  is  aligned  by  means  of  field  glasses  or  by  a  transit  set  on  line 
and  the  tension  is  then  applied.  When  the  zero  graduation  of  the 
tape  is  exactly  over  the  end  mark  and  the  tension  is  correct,  the 
position  of  the  forward  (50  meter)  end  is  marked  on  the  metal 
strip,  and  the  temperature  is  read  on  all  the  thermometers.  The 
tape  is  then  carried  forward  and  the  process  repeated  until  the 
measurement  of  the  section  is  completed.     If  there  is  a  short 
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measurement  at  the  end  of  the  line,  this  may  be  taken  with  an 

ordinary  metric  steel  tape  graduated  its  whole  length.  When- 
ever it  is  necessary  to  set  forward  or  backward  on  one  of  the 

metal  strips  in  order  to  bring  the  reference  mark  on  the  milli- 
meter scale,  this  fact  is  recorded;  it  is  also  indicated  on  the  metal 

strips,  which  are  all  preserved  as  a  part  of  the  permanent  record. 
Measurements  of  bases  made  in  this  manner  can  be  made  at  the 

rate  of  about  2  kilometers  per  hour.  If  the  wind  is  blowing,  it 

may  be  found  necessary  to  use  three  intermediate  supports  in 

order  to  maintain  the  required  standard  of  accuracy.  If  the 

first  two  measurements  of  any  one  section  of  the  base  show  a 

discrepancy  not  exceeding  20"""  X  ̂ K,  the  mean  is  considered 
as  sufficiently  accurate  and  no  further  measurements  of  this 
section  are  made. 

27.  Corrections  to  Base-Line  Measurements.  —  Correction 
for  Grade. 

Where  the  slope  is  determined  by  direct  leveling,  the  most 

convenient  formula  for  computing  the  horizontal  distance  is  one 

involving  the  difference  in  elevation  of  the  ends  of  the  tape. 

In  Fig.  22,  let  A  be  the  difference  in  elevation  of  the  end  points 

A  and  B,  and  let  /  be  the  length  and  d  the  required  horizontal 
distance.     Then 

Corr.  for  grade  =  Cg=l-d  =  l-Vj^-}^=l-  /\/i ^ 
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But  i'-pj='-^-^.   • 

Therefore  c,  =  /  -  ;(i -^  -  ̂,  .  .  .  ) 

If  the  slope  has  been  found  in  terms  of  the  vertical  angle  a,  the 
correction  may  be  computed  by  the  expression 

Cg  =  2  I  sin^  ̂   a  =  I  vers  a.  [2] 

In  good  base-line  work  the  errors  in  length  due  to  errors  in  deter- 
mining the  grade  should  never  exceed  one  part  in  one  million. 

28.  Corrections  for  Alignment. 

The  errors  in  aUgning  a  straight  base-line  can  easily  be  kept  so 
small  as  to  be  negligible.  If  any  point  is  found,  however,  to  be 

out  of  hne  by  an  amount  sufficient  to  affect  the  length,  the  cor- 
rection may  be  computed  by  Formula  [i]. 

29.  Broken  Base. 
Sometimes  it  is  desirable  or  necessary  to  break  a  base  into  two 

parts  which  make  a  small  (deflection)  angle  with  each  other.  If 
the  two  sections  are  measured  with  the  usual  precision,  and  if  the 
angle  also  is  accurately  measured,  the  length  may  be  computed 

as  follows:  let  a  and  b,  Fig.  23,  be  the  measured  lengths,  and  6  the 
angle  between  them,  and  let  c  be  the  desired  base,  then  from  the 
triangle  we  have 

c^  =  a^  -{-  b"^  -\-  2  ab  cos  d. 

Putting  for  cos  B  the  series  i   !-•••,  there  results 2 

c"  =  {a  +  by  -  abd\ 
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Placing 'the  factor  {a  +  by  outside  the  brackets  and  extracting 
the  square  root, 

2{a  -\-o) 

or  c  =  a  +  6   — —--  (sin  I'f, 2\a  -\-  0) 

where  6  is  in  minutes  of  arc.     Substituting  the  value  of  sin  i', 

c  =  a  -\-  0  —  0.000,000,042,308   r  •  [3] 
a  -\-b 

(log.  0.000,000,042,308  =  2.62642  —  10). 

30.  Correction  for  Temperature. 

The  temperature  correction  may  be  computed  if  we  know  the 

coefficient  of  expansion,  the  actual  temperature  of  the  tape  and 

the  standard  temperature,  and  the  measured  length  of  line.  If 

k  is  the  coefficient,  t  the  observed  temperature,  ^  the  standard 

temperature,  and  L  the  measured  length,  then 

Temperature  correction  =  -\-kL  {t  —  to).  [4] 

The  temperature  correction  is  often  expressed  as  a  term  in  the 

tape  equation,  as  shown  in  the  following  article. 
31.  Correction  for  Absolute  Length. 

The  length  of  the  tape  is  usually  expressed  in  the  form  of  an 

equation,  such  as 

^516  =  so"'  +  (12.382"""  ±  0.016"'"') 

+  (0.0178"'"'  ±  o-oooy™")  (/  -  25°.8  C),  [5] 

meaning  that  tape  number  516  is  12,382"'"'  more  than  50"*  long 

at  a  temperature  of  25^.8  C,  and  that  0.016"'"'  is  the  uncertainty 
of  this  determination.  The  quantity  0.0178  is  the  temperature 

change  for  1°  for  a  50"*  length,  and  0.0007  is  the  uncertainty  in 
this  number.  (The  temperature  coefficient  for  this  tape  is 
0.000,000,356.) 
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According  to  the  present  practice,  tapes  are  standardized  at 

Washington*  under  exactly  the  same  conditions,  in  regard  to 
tension,  temperature  determination,  and  manner  of  support,  as 
those  which  are  to  govern  the  field  measurements.  By  this 
means  all  uncertainty  in  the  absolute  length  and  in  the  tension 
correction  is  kept  within  narrow  limits. 

32.  Reduction  of  Base  to  Sea-Level. 
In  order  that  all  triangulation  lines  may  be  referred  to  the 

same  surface  it  is  customary  to  employ  the  length  of  the  line  at 

sea-level  between  the  verticals  through  the  stations. 
In  Fig.  24,  let  B  represent  the  measured  base  at  elevation  h 

above  sea-level  (supposed  spherical) , 
and  h  the  length  of  base  reduced  to 

sea-level,  R^  being  the  radius  of 
curvature  of  the  surface  (see  Art. 

97  and  Table  XI).  Then,  since 
the  arcs  are  proportional  to  their radii, 

b  _     IL B Ra+h 

and 

b  =  B- 

'+^ 

)-t
 

Therefore  the  reduction  to  sea-level  is 

If  there  is  a  great  difference  in  elevation  in  difTerent  parts  of  the 
base,  the  line  should  be  divided  into  sections  and  the  mean  value 
of  h  found  for  each  section.     Then  B  in  the  formula  is  taken  as 

*  United  States  Bureau  of  Standards,  Washington,  D.  C. 
t  See  footnote  on  page  51. 
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the  length  of  the  section  in  question.  The  logarithm  of  the  mean 

radius  of  curvature  in  latitude  45°,  which  may  be  used  for  short 
sections,  is  6.80470. 

Question.  Is  it  necessary  to  reduce  each  triangulation  line  separately  to  sea- 
level  ? 

33.   Correction  for  Sag. 
Between  any  two  consecutive  points  of  support  the  tape  hangs 

in  a  curve  known  as  the  catenary,  its  form  depending  upon  the 
weight  of  the  tape,  the  tension  appHed,  and  the  distance  between 
the  points  of  support. 

In  Fig.  25  let  ̂   be  the  horizontal  distance  between  the  supports, 
the  two  being  supposed  at  the  same  level ;  let  n  be  the  number  of 

Fig.  25. 

such  spans  in  the  tape-length,  t  the  tension,  and  w  the  weight 
of  a  piece  of  tape  of  unit  length.  Also  let  v  equal  the  (vertical) 
sag  of  the  middle  point  of  the  tape  below  the  points  of  support. 
Since  the  curve  is  really  quite  flat  under  the  tension  actually 

employed  in  field-work,  the  length  of  the  catenary  will  be  sen- 
sibly equal  to  that  of  a  parabola  whose  axis  is  vertical  and  which 

passes  through  the  points  A,  B,  and  C.    The  equation  of  this 
P 

parabola  is  x^  =  —  'y,  and  the  length  of  curve,  found  by  the 

usual  method  of  the  calculus,  is  2s  =  I  -\    +  •  •  •  .     The 

difference  2  s  —  I  between  the  length  of  curve  AB  and  the  chord 
AB  is  approximately 

,      8      z;2 25  -  /  =  -  XT' 
[a] 
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If  we  consider  the  forces  acting  on  the  tape  at  the  point  C,  and 
take  moments  about  the  point  of  support  A ,  we  have 

wl      I  ^ 
2        4 

Therefore  "!>  =  —-'  [b] 

St  ^  ̂ 

Substituting  in  [a]  the  value  of  v  found  in  [b],  we  find  that  the 
shortening  of  this  section  of  tape  due  to  sag  is 

•  3/V8//    24v^y- 

For  n  sections,  we  have  nl  =  L,  whence 

Correction  for  sag  =  C,  =  —  ( — )  •  [7] 
24  \  w 

34.  Tension. 
The  modulus  of  elasticity  of  the  tape  due  to  the  tension  apphed 

equals  the  stress  divided  by  the  strain.  If  a  =  the  elongation 
and  L  the  length,  and  if  /  equals  the  tension  and  S  the  area  of  the 
cross  section,  then  the  modulus  of  elasticity  E  is  given  by 

Sa 

The  elongation  is 

a  =  C,  =  §    ■  [8] 
where  C<  is  the  correction  for  the  increase  in  length  due  to  tension. 
Evidently  the  difference  in  length  due  to  a  change  from  tension 

to  to  tension  /  is  a  =  —;  (^  —  ̂o)- 
SE 

The  value  of  E  must  be  found  by  trial,  applying  known  ten- 
sions and  observing  a  directly. 
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To  allow  for  slight  variations  in  tension,  such  as  those  due  to 

the  failure  of  the  spring  balance  to  give  the  desired  reading  the 

instant  the  scale  of  the  tape  is  read,  the  correction  may  be  derived 
as  follows: 

Since  the  efifective  length  of  the  tape  depends  both  upon  the 

elongation  due  to  tension  and  upon  the  shortening  due  to  sag, 

and  since  these  both  involve  t,  the  variation  may  be  found  by 
differentiating  the  expression 

Li  =  L  +  Ct-Cs 

^^^M-tM' 

24 

regarding  t  as  the  independent  variable.  The  differentiation 

gives 

This  is  the  correction  due  to  small  variations  int.  This  quantity 

may  be  found  satisfactorily  by  actual  tests,  varying  t  by  known 

amounts  and  observing  the  change  in  length  directly. 

It  was  once  the  practice  to  compare  the  tape  with  the  standard 

when  it  was  supported  its  entire  length,  and  to  calculate  the  sag 

and  tension  corrections  to  obtain  the  effective  length  when  sup- 
ported at  a  few  points.  The  present  practice  of  comparing  the 

tape  under  the  same  conditions  that  are  to  exist  in  the  field- 
work  eliminates  all  imcertainty  in  these  computed  corrections. 

PROBLEMS 

Problem  i.  Derive  the  equation  of  the  parabola  stated  in  Art.  33.  Compute 
the  length  of  the  parabola  between  the  points  of  support  A  and  B. 

Problem  2.  The  difference  in  elevation  of  the  ends  of  a  50-meter  tape  is  7.22  ft., 
obtained  by  leveling.     What  is  the  horizontal  distance  ? 

Problem  3.  A  base  line  is  broken  into  two  sections  which  meet  at  an  angle  of 

1°  59'  3i".6.  The  lengths  of  the  two  segments  are  1854.275  meters  and  3940.740 
meters.    What  is  the  distance  between  the  terminal  points? 

Problem  4.  The  length  of  a  base  hne  is  i7486"'.58oo  measured  at  an  altitude  of 

34.16  meters.  The  latitude  of  the  middle  point  of  the  base  is  38°  36'.  The  azi- 

muth of  the  base  is  16°  54'.  What  is  the  corresponding  length  of  the  base  at  sea- 
level  ? 
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FIELD-WORK  OF  TRIANGULATION  —  MEASUREMENT 
OF  HORIZONTAL  ANGLES 

35.  Instruments  Used  in  Measuring  Horizontal  Angles. 
Instruments  intended  for  triangulation  work  are  of  two  kinds: 

the  direction  instrument,  first  designed  in  England  by  Ramsden 
in  1787,  and  the  repeating  instrument,  first  used  in  France 
about  1790.  The  former  is  the  one  chiefly  used  at  the  present 
time  for  primary  triangulation;  the  repeating  instrument,  on 
account  of  its  comparative  Hghtness  and  simphcity,  is  much 
used  on  triangulation  of  lesser  importance. 

Triangulation  instruments  are  larger  than  ordinary  surveying 

transits,  the  diameter  of  the  circles  varying  in  different  instru- 
ments from  8  to  30  inches.  It  is  found,  however,  that  small 

circles  can  be  graduated  so  accurately  that  little  or  nothing  is 
gained  by  using  circles  more  than  from  10  to  1 2  inches  in  diameter. 
Furthermore,  the  smaller  circles  are  less  affected  by  flexure  than 
the  larger  circles.  All  triangulation  instruments  except  the  very 
smallest  are  built  with  three  levehng  screws  and  are  used  on 
solid  supports,  like  stone  piers,  or  on  the  tripods  of  observing 
towers.  Small  instruments  intended  for  work  of  a  lower  grade 
of  accuracy  may  be  used  on  their  own  tripods. 

36.  The  Repeating  Instrument. 
The  repeating  instrument  has  an  upper  and  a  lower  plate 

arranged  exactly  as  in  the  surveyor's  transit,  and  the  graduated 
circle  is  read  by  two  or  more  verniers  graduated  to  10''  or  to  5". 
Verniers  reading  finer  than  5''  are  not  practicable,  and  depend- 

ence must  be  placed  upon  the  repetition  principle  for  securing 
greater  precision.  Fig.  26  shows  a  repeating  instrument  having 

an  8-inch  circle  which  is  read  by  two  verniers  to  10  seconds.    The 
44 
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Fig.  26.     Repeating  Instrument. 
(C.  L.  Berger  &  Sons.) 
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telescope  of  this  instrument  has  an  aperture  of  i§  inches  and  a 

magnifying  power  of  30.  Since  an  instrument  of  this  kind  is 

likely  to  be  used  in  sighting  on  pole  signals,  the  cross-hairs  are 
usually  arranged  in  the  form  of  an  X,  the  pole  bisecting  the 

angle  between  the  hairs  when  the  pointing  is  made.  Single 

vertical  hairs  would  not  be  practicable  except  on  short  lines  and 

wide  signals,  as  the  width  of  the  ordinary  hair  is  so  great  that  it 

completely  obscures  the  pole  on  long  distances. 
37.  The  Direction  Instrument. 

The  direction  instrument  has  but  one  horizontal  circle,  read 

by  two  or  more  microscopes  instead  of  verniers.  The  circle  can 

be  turned  about  the  axis  and  clamped  in  any  desired  position. 

The  motion  of  the  telescope  and  the  microscopes  is  entirely  in- 
dependent of  the  motion  of  the  circle ;  the  latter  can  be  shifted 

while  the  upper  part  of  the  instrument  (called  the  alidade)  re- 
mains clamped.  It  is  evident  that  a  repeater  could  be  used  as  a 

direction  instrument,  but  that  a  direction  instrument  could  not 

be  used  for  measuring  angles  by  the  repetition  method.  Fig.  27 

shows  a  12-inch  theodolite  with  microscopes  reading  to  seconds. 
The  circle  of  the  direction  instrument  is  usually  graduated  into 

5'  spaces.  The  direction  of  the  line  of  sight  of  the  telescope  is 

read  by  first  noting  the  degrees  and  5'  spaces  in  a  small  index 
microscope,  and  then  accurately  measuring  the  fractional  parts 

of  the  5'  spaces  by  means  of  the  three  equidistant  micrometer 
microscopes.  The  micrometers  can  usually  be  read  to  seconds 

directly,  and  to  tenths  of  a  second  by  estimation.  The  mean 
of  the  three  micrometer  readings  is  taken  as  the  true  reading, 

and  this  is  added  to  the  reading  of  the  index  microscope  to 
obtain  the  direction. 

The  telescope  of  the  12-inch  theodolite  used  by  the  Coast  Sur- 
vey has  an  aperture  of  2.4  inches,  a  focal  length  of  29  inches,  and 

magnifying  powers  of  30,  45,  and  60.  The  circle  is  graduated 

to  5'  and  reads  to  seconds  by  means  of  three  microscopes. 
A  camel's-hair  brush  (inside  the  cover  plate)  sweeps  over  the 
graduations.     The  base  is  made  very  heavy,  and  the  bearing 
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Fig.  27.     Twelve-inch  Theodolite. 
(Coast  and  Geodetic  Survey.) 
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surfaces  of  the  centers  are  glass  hard.  The  centers  on  this  instru- 
ment are  very  long.  The  upper  parts  of  the  instrument  are 

made  chiefly  of  aluminum,  in  order  to  diminish  the  weight 

bearing  upon  the  centers.  This  design  produces  an  instrument 

of  exceptional  stability. 

Direction  instruments  are.  used  chiefly  on  long  lines  and  in 

connection  with  heliotropes  or  lights.  For  this  reason  the  cross- 
hairs usually  consist  of  two  vertical  hairs,  set  so  as  to  subtend 

an  angle  of  from  lo"  to  20",  and  two  horizontal  hairs,  set  much 
farther  apart  and  used  merely  to  limit  the  portion  of  the  vertical 

hairs  to  be  used  in  pointing. 

38.   The  Micrometer  Microscope. 

The  construction  of  the  micrometer  microscope  is  shown  in 

Fig.  28.     The  head  of  the  screw  is  graduated  into  60  divisions 
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Fig.  28. 

corresponding  to  seconds  of  angle.  As  the  screw  head  is  turned 

the  two  parallel  hairs  in  the  field  of  the  microscope  are  moved  in 

a  direction  parallel  (tangent)  to  the  edge  of  the  graduated  circle. 

The  distance  between  these  hairs  is  just  sufficient  to  leave  a 

small  white  space  on  each  side  of  a  line  of  graduation  when  it  is 
centered  between  the  two  hairs.  The  pitch  of  the  screw  and  the 

focal  length  of  the  objective  of  the  microscope  are  so  related  that 

five  whole  turns  of  the  screw  will  carry  the  hairs  from  one  gradua- 
tion to  the  next.     The  number  of  whole  turns  of  the  screw  may 
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be  counted  on  a  notched  scale  visible  in  the  field  of  view  of  the 

microscope.  The  fraction  of  a  space  to  be  measured  is  that  lying 

between  the  zero  point  of  the  notched  (comb)  scale  and  the 

graduated  line  last  passed  over  by  the  zero  point.  Strictly 

speaking,  the  zero  point  is  that  position  of  the  hairs  in  the  zero 
notch  at  which  the  scale  on  the  screw  head  will  read  exactly  zero. 

The  position  of  the  hairs  for  a  zero  reading  of  the  screw  may  be 

adjusted  by  holding  fast  the  graduated  ring  on  the  screw  head 

and  turning  the  milled  edge  screw  head  which  moves  the  hairs. 

The  microscope  inverts  the  image  of  the  graduated  circle  so  that 

graduations  increasing  in  the  direction  of  azimuths  will  appear 
to  increase  from  left  to  right  in  the  field  of  view  of  the  microscope. 

The  readings  on  the  screw  head  increase  as  the  screw  is  turned 

left-handed,  and  the  hair  lines  move  in  the  direction  of  decreasing 

graduations  over  the  circle. 
To  measure  the  space  between  the  zero  of  the  microscope  and 

the  last  line  passed  over,  it  is  only  necessary  to  turn  the  screw 

until  the  graduation  in  question  bisects  the  space  between  the 

hairs,  and  then  to  read  the  comb  scale  and  the  scale  on  the  screw 

head.  This  reading  is  to  be  added  to  the  number  of  the  gradu- 
ated line,  to  obtain  the  direction  as  shown  by  this  microscope. 

For  example,  if  the  screw  is  turned  two  revolutions  (two  notches) 

and  ten  divisions  in  order  to  center  the  47°  05'  mark  between 

the  hairs,  the  reading  of  this  microscope  is  47°  05'  +  2'  10"  = 

47°  07'  10".  A  complete  set  of  readings  of  one  direction  would 
consist  of  readings  of  each  of  the  three  microscopes  on  both  the 

preceding  and  the  following  graduations,  six  readings  in  all. 

39.  Run  of  the  Micrometer. 

If  the  microscope  is  perfectly  adjusted  with  respect  to  the 

graduated  circle,  and  if  the  latter  is  perfectly  plane,  then  five 

whole  revolutions  of  the  screw  should  carry  the  hairs  from  one 

line  to  the  next,  and  the  reading  of  the  screw  should  be  the  same 

on  all  lines.  Since  this  condition  is  rarely  fulfilled,  there  is  ordi- 
narily a  small  difference  in  the  forward  and  backward  readings, 

called  the  error  of  run  of  the  micrometer. 
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The  forward  reading  F  is  the  reading  taken  when  the  threads 

are  moved  from  the  zero  position  (Fig.  29)  to  the  preceding  mark 

(25'  in  Fig.  29a).  The  back  reading  B  is  the  one  taken  on  the 
following  (30O  mark,  Fig.  29b.  The  graduations  on  the  screw- 

head  decrease  as  the   threads   move   from  25'  to  30'.     If  the 

Fig.  29.     Field  of  Micrometer  Microscope. 

Forward  Reading.  Fig.  29b.     Back  Reading. 

micrometer  screw  is  turned  so  that  the  threads  move  from  its 

zero  to  the  25'  mark,  then  the  reading  F  is  to  be  added  directly 

to  the  circle  reading.  In  the  figure  the  reading  is  201°  25'  + 
I '  26.2"  =  201°  26'  26.2".  Without  assuming  anything  in  regard 
to  the  actual  value  of  one  turn  of  the  screw,  the  value  may  be 
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computed  by  dividing  the  angular  space  between  graduations  by 
the  number  of  turns  or  divisions  recorded  in  passing  from  one 

graduation  to  the  next.     If  i?  =  the  value  of  one  revolution,  then 

^  =         300''         _    300" 300  -\-  F  —  B      300  +  r 

where  r  is  the  run  of  the  micrometer  in  seconds  (divisions)  as 

indicated  by  the  differences  of  the  forward  and  backward  read- 
ings, positive  if  F  is  greater  than  B.  If  the  screw  turns  more 

than  five  times  in  passing  from  the  25'  line  to  the  30'  line,  the 

reading  B,  on  the  30'  line,  will  be  smaller  than  F,  since  the  screw 
readings  are  decreasing.  This  makes  F  —  B  =  r  positive. 
Hence  the  denominator  of  the  above  fraction  is  greater  than  300, 

and  the  value  of  one  turn  is  less  than  unity,  as  it  should  be  ac- 
cording to  the  assumption. 

If  F  is  the  forward  reading  in  any  given  case,  it  must  be  con- 
verted into  arc  by  multiplying  it  by  the  value  of  one  turn,  since 

F  is  simply  a  certain  number  of  turns  and  divisions,  not  the  true 
number  of  minutes  and  seconds, 

Therefore  True  reading  =  F  (^   ). 
\3oo  -f  r/ 

Since  r  is  small  (say  2"  or  3"),  it  is  permissible  to  write 

R  =    ̂   =    =  1   +  .  .  .    * 
300  -\-r  _^  300 

300 

and  the  true  reading  =  F\i   •  •  •   ) \        300  / 

=  F-F^^-  (a) 

300 

This  formula  corrects  the  forward  reading  only,  and  assumes 

*  By  actual  division  — ; —  =1  —  x  +  x'^  —  x^+---.     If  a;  is  small  enough 
I  -\-  X 

so  that  x"^  and  the  following  term  may  be  neglected,  then  —r- —  =  1  —  x. 
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that  the  bisection  and  reading  are  perfectly  made.  If  the  back 

reading  is  corrected  in  a  similar  manner,  the  result  is 

True  reading  =  300"  —  (300"  —  B){i   )• \        3CX)/ 

The  first  300''  is  the  space  between  25'  and  30'.  The  factor 

(300''  —  B)  is  the  space  between  zero  and  the  30'  mark  deter- 
mined by  the  B  reading.  It  should  be  remembered  that  when 

the  micrometer  is  turned  to  the  30'  mark,  the  readings  are  de- 
creasing; therefore  the  direct  reading  does  not  give  this  space, 

but  5  minus  this  space.     SimpUfying  this  expression  we  have 

True  reading  =  B-\-r  -  B-^-  (b) 

300 

Since  there  is  no  reason  for  preferring  either  the  forward  or  the 

backward  reading,  the  mean  is  used  as  the  best  value.  The 

mean  of  (a)  and  (b)  is 

F  +  B  ̂   r      F  +  B  ̂ ^    r 
222  300 

F  -hB 
If    =  m,  then  the  correction  to  m,  the  mean  of  the  two  , 2 

readings,  is 

Corr.  =   m    [10] 2  3C0 

A  general  table  may  be  computed  for  different  values  of  m  and 

r,  so  that  no  special  computation  is  necessary  when  correcting  a 

direction.  It  is  good  practice  to  determine  r  from  all  the  F  and 

B  readings,  and  to  employ  this  average  value  when  making  the 
corrections. 

40.  Vertical  Collimator. 

In  centering  a  signal  over  a  station,  placing  a  mark  under  a  new 

signal,  or  centering  the  theodolite  over  the  station  mark,  the 

Coast  Survey  observers  sometimes  employ  the  vertical  collimator 

shown  in  Fig.  30.  The  instrument  is  adjusted  by  means  of  spirit 
levels,  which  revolve  around  a  vertical  axis  like  those  of  a  transit. 
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A  telescope  may  be  placed  in  coincidence  with  the  vertical  axis 

of  the  collimator,  and  its  line  of  sight  adjusted  to  point  vertically 

downward.  With  the  instrument  in  this  position  the  observer 

may  obtain  a  point  which  is  vertically  above  the  center  mark  of 
the  station. 

Fig.  30.     Vertical  Collimator. 
(Coast  and  Geodetic  Survey.) 

41.  Adjustments  of  the  Theodolite. 

The  adjustment  of  the  levels  attached  to  the  alidade  is  made 

by  means  of  reversals  about  the  vertical  axis  of  the  instrument, 

exactly  as  with  the  engineer's  transit. 
The  adjustment  of  the  stride  level  is  tested  by  placing  it  on  the 

horizontal  axis,  reading  both  ends  of  the  bubble,  and  then  re- 

versing the  level  and  reading  again.  The  adjusting  screws  of 
the  stride  level  should  be  turned  so  that  the  bubble  moves  half- 
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way  back  from  the  second  position  to  the  first.  When  the 
stride  level  is  so  adjusted  that  it  reads  the  same  in  either  position, 
it  is  in  correct  adjustment,  and  the  horizontal  rotation  axis  may 
then  be  leveled  by  moving  the  adjustable  end  of  the  axis  until 

the  bubble  is  in  the  center  of  its  tube.  Of  course  the  two  adjust- 
ments may  be  made  simultaneously.  If  desired,  the  stride  level 

may  be  used  also  to  make  the  vertical  axis  truly  vertical. 
The  adjustment  of  the  line  of  sight  in  a  plane  perpendicular 

to  the  horizontal  axis  may  be  made  by  reversals  about  the  hori- 

zontal axis  as  in  testing  an  engineer's  transit;  or  it  may  be  made 
by  sighting  an  object,  Hfting  the  telescope  out  of  its  bearings,  and, 
after  reversing  the  axis,  replacing  it  in  the  bearings.  If  the 

object  is  no  longer  in  the  line  of  sight,  the  reticle  is  brought  half- 
way back  from  the  second  position  toward  the  first. 

The  test  of  the  adjustment  of  the  microscopes  is  made  by 
measuring  the  run  of  each  micrometer,  taking  first  a  forward  and 

then  a  back  reading.     In  case  the  run  of  a  microm- 

eter is  greater  than  about  3",  it  should  be  adjusted 
by  changing  the  distance  from  the  objective  to  the 
reticle,  and  then  moving  the  whole  microscope  so 

that  the  graduations  are  again  in  focus.     If  the 
image  of  the  division  is  greater  than  5  whole  turns 
of  the  screw,  the  objective  should  be  moved  toward 

the  eyepiece,  and  then  the  whole  microscope  moved 
away  from  the  circle.     Moving  the  objective  away 

Fig.  31.       ̂ ^^^  t^^  micrometer  lines  diminishes  the  angle  be- 
tween the  two  lines  of  sight  corresponding  to  the  5 

turns,  and  reduces  the  size  of  the  image  of  the  division  (Fig.  31). 

It  will  usually  require  a  series  of  trials  to  perfect  this  adjust- 
ment. 

42.  Efifect  of  Errors  of  Adjustment  on  Horizontal  Angles. 
The  effect  of  errors  due  to  the  inclination  of  the  horizontal  axis 

to  the  horizon,  and  those  due  to  the  imperfect  adjustment  for 
collimation  (line  of  sight),  are  not  independent  of  each  other. 
These  errors  are  usually  so  small,  however,  that  it  is  permissible 
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to  compute  their  effect  separately,  as  though  only  one  existed  at 

one  time.     In  Fig.  32,  Z  is  the  true  zenith  and  Z'  the  point  where 
the  vertical  axis  of  the  instrument  prolonged  pierces  the  celestial 

sphere.     5  is  a  point  whose  altitude  is  h.     Assuming  that  the 
horizontal  axis  makes  an  angle  *  with  the  horizon,  and  that  all 

other  errors  are  zero,  then  from  the  figure  it  will  be  seen  that  we 

may  write 

sin  Z'  _  sin  US 

sini        sinZ'5' or,  with  sufficient  accuracy, 

Z  =  i  tan  A, 

where  h  is  the  angular  altitude  of  the  point  sighted. 

[11] 

Fig.  32. 

It  appears,  then,  that  for  each  point  sighted  there  should  be  a 
correction  to  the  circle  reading  equal  to  i  tan  h.  Triangulation 

points  are  usually  so  nearly  on  the  horizon,  and  by  careful  atten- 
tion to  the  leveHng  the  error  i  may  easily  be  kept  so  small,  that 

there  is  seldom  any  necessity  for  applying  the  correction  except 

for  such  observations  as  those  on  a  circumpolar  star  for  azimuth. 

In  the  preceding  paragraph  it  is  assumed  that  the  vertical  axis 

is  truly  vertical,  the  graduated  circle  being  horizontal,  while  the 
horizontal  axis  is  not  horizontal.  If  the  two  axes  are  at  right 

angles  to  each  other,  but  the  vertical  axis  is  inclined  to  the  true 

vertical  by  a  small  angle  i,  it  may  be  shown,  by  a  diagram  similar 

to  Fig.  32,  that  the  same  correction  applies  to  this  case  also. 
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The  error  of  a  horizontal  direction  due  to  an  error  of  collima- 

tion  may  be  computed  as  follows:  Let  the  error  in  the  sight  line 

be  represented  by  c;  then,  when  the  axis  of  colhmation  (Fig.  33) 

traces  out  the  great  circle  ZN ,  the  line  of  sight  traces  out  the 

parallel  circle  SA ,  which  is  c  seconds  from  ZN.    If  5  be  any  point 

Fig.  33. 

toward  which  the  cross-hair  is  pointing,  and  if  arc  SN  be  drawn 
perpendicular  to  ZN,  the  error  in  direction,  or  the  angle  at  Z,  is 

found  from  the  equation 

sin  Z  _    sin  c 
sin  N      sin  ZS 

or,  since  ZiV  =  90°,  Z  =  c  sec  h.  [12] 

Each  direction  should  therefore  be  corrected  by  the  quantity 

c  sec  h.  On  account  of  the  small  value  of  c  in  a  well-adjusted 
instrument  this  correction  is  necessarily  small;  furthermore,  it  is 

usually  eliminated  from  the  final  result  by  the  method  employed 
in  making  the  observations. 

43.   Method  of  Measuring  the  Angles. 

In  measuring  angles  with  the  repeating  instrument  the  common 

practice  has  been  to  measure  the  angle  six  times,  beginning  with 

the  left-hand  signal  of  a  pair  and  measuring  toward  the  right,  and 

then,  after  reversing  the  telescope  both  in  altitude  and  in  azimuth, 

to  measure  six  times  from  right  to  left.  The  recent  practice  of 

the  Coast  Survey  has  been  to  measure  first  the  angle  itself  by 

six  repetitions,  left  to  right,  with  the  telescope  direct,  then  the 
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explement  (360°  minus  the  angle)  six  times,  moving  the  alidade 
in  the  same  direction  as  before,  left  to  right,  the  telescope  being 

reversed.  This  brings  the  vernier  nearly  back  to  the  same  read- 
ing as  by  the  previous  method,  but  it  differs  in  the  mechanical 

operation.  If  there  is  any  systematic  effect  on  the  angle,  due  to 

the  action  of  clamps  or  to  drag  on  the  centers,  it  is  eliminated 

from  the  final  result,  provided  such  errors  are  the  same  for  a 

large  as  for  a  small  angle. 

The  reversal  of  the  telescope  in  the  preceding  programs  is  in- 

tended to  eliminate  the  errors  of  adjustment  of  the  Hne  of  colli- 
mation  and  of  the  rotation  axis  of  the  telescope.  It  does  not 

eliminate  errors  due  to  imperfect  leveling.  The  measurement 

of  angles  in  both  the  left-to-right  and  the  right-to-left  direction 

is  designed  to  eliminate  possible  twist  in  the  support  of  the  instru- 
ment, upon  the  assumption  that  this  twist  takes  place  at  a 

uniform  rate. 

In  order  to  eliminate  errors  due  to  faulty  graduation  of  the 

circle,  the  initial  reading  for  different  sets  of  observations  may 

be  shifted  by  ̂ — ,  where  m  is  the  number  of  sets  taken  and  n mn 

is  the  number  of  verniers.     For  example,  in  taking  four  sets  with 

a  two-vernier  instrument,  the  vernier  would  be  set  ahead  45° 
each  time.     Errors  in  the  graduation  of  the  verniers  may  be 

eliminated  in  a  similar  manner  by  changing  the  vernier  setting 

—  th  part  of  a  circle  division  at  the  beginning  of  each  new  set. m 

For  four  sets,  on  a  10'  graduation,  the  first  setting  might  be  zero, 

the  second  45°  02'  30",  the  third  90°  05'  00",  and  the  fourth 

135°  07' 30".    ̂ With  the  direction  instrument  the  method  of  measurement 

consists  in  first  pointing  the  telescope  at  some  conspicuous  signal, 

selected  as  the  first  of  the  series  around  the  horizon,  and  reading 

all  the  microscopes,  then  turning  the  telescope  to  the  other  signals 

in  order  and  reading  all  the  microscopes  at  each  pointing.     After 

the  last  pointing  has  been  completed  and  the  microscopes  read, 
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the  telescope  is  reversed,  the  pivots  remaining  in  the  same  bear- 
ings, and  the  series  is  repeated,  the  signals  being  sighted  in  the 

reversed  order.  The  horizontal  circle  remains  clamped  during 

the  entire  process.  The  above  measurements  constitute  a  single 

"set."  As  many  sets  may  be  taken  as  are  required  to  give  the 
necessary  accuracy.  To  eliminate  systematic  errors  of  gradua- 

tion and  errors  of  the  micrometers,  the  circle  reading  is  advanced 

for  each  new  set,  as  explained  later  in  the  "Instructions  for 

Primary  Triangulation."  It  should  be  observed  that  the  ac- 

curacy depends  upon  the  circle's  remaining  undisturbed  in 
azimuth  during  each  set. 

In  making  bisections,  either  when  pointing  on  the  signal  or 

when  reading  the  microscopes,  the  observer  should  proceed  as 

rapidly  as  he  can  without  making  careless  pointings  and  without 

danger  of  making  mistakes.  Much  time  spent  in  perfecting 

settings  and  in  watching  them  to  see  if  they  are  correct  appears 

to  reduce  slightly  the  accidental  errors  of  observation,  but  does 

not  really  increase  the  accuracy  of  the  work,  as  shown  by  the 

final  results  of  the  triangulation.  The  longer  the  time  that  is 

permitted  to  intervene  between  pointings,  the  greater  the  oppor- 
tunity for  the  circle  to  shift  its  position  or  change  its  temperature ; 

and  the  effects  of  these  changes  are  probably  greater  than  the 

accidental  errors  of  pointing  and  reading. 

44.   Program  for  Measuring  Angles. 

Various  programs  of  observations  have  been  devised,  with  a 

view  to  eliminating  or  reducing  the  errors  in  horizontal  angles. 

The  principal  errors  which  have  to  be  considered  in  planning  the 

field  work  of  the  triangulation,  and  the  methods  adopted  for 

eliminating  them,  are  as  follows: 

I.  Errors  due  to  non-adjustment  of  the  theodolite.  These  are 
all  eliminated  by  the  use  of  the  instrument  in  the  direct  and 

reversed  positions,  except  that  due  to  erroneous  leveling.  The 

leveling  of  the  plate  and  the  horizontal  axis  must  be  carefully 

attended  to  in  setting  up  the  instrument,  and  must  be  corrected 

whenever  it  becomes  necessary.     This  may  be  done  at  any  time 
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between  sets  of  angles  or,  if  a  repeater  is  used,  at  any  time  when 
the  lower  clamp  is  loose. 

2.  Errors  arising  from  imperfections  of  graduation.  These  are 
practically  eliminated  by  distributing  the  readings  uniformly 
around  the  circle. 

3.  Errors  of  eccentricity  of  the  circle  and  alidade.  These  errors 

are  almost  wholly  eliminated  by  reading  two  or  more  equidis- 
tant microscopes  or  verniers. 

4.  Errors  due  to  twisting  of  the  tripod  under  the  action  of  the  sun's 
rays.  The  twist  is  ehminated  by  reversing  the  direction  of  the 
measurements,  provided  the  rate  of  twist  and  the  speed  of 
measuring  the  angles  are  both  uniform.  The  rate  of  twist  on 
some  towers  has  been  found  to  be  about  one  second  of  angle  per 
minute  of  time.  On  the  slender  towers  used  on  the  98th  meridian 

triangulation,  the  twist  was  so  small  that  it  could  not  be  detected 
by  an  examination  of  the  measurements. 

5.  Errors  due  to  irregular  refraction  of  the  atmosphere  and  to 
difficult  seeing.  These  will  be  partly  eliminated  by  taking  a  large 
number  of  measurements;  if  the  results  indicate  that  the  neces- 

sary precision  is  not  being  obtained,  it  will  be  best  to  wait  until 
the  conditions  are  more  favorable.  This  can  be  judged  best  by 

the  "probable  error  "  of  the  direction. 
6.  The  personal  error  of  the  observer.  The  personal  error  is 

partly  eliminated  by  measuring  the  angle  a  large  number  of  times. 

7.  Errors  due  to  temperature  and  wind.  Errors  due  to  fluctua- 
tion of  the  temperature  of  the  instrument,  and  to  vibrations 

caused  by  wind,  may  be  reduced  by  shielding  the  instrument 

from  the  sun  and  wind,  either  by  a  tent  or  by  a  temporary  build- 
ing. 

The  following  list  of  instructions  to  observers  is  taken  from 
the  Coast  and  Geodetic  Survey  Special  Publication  No.  19 
(1914),  and  represents  the  present  practice  of  that  Survey. 

I.  Instruments.  —  In  general,  direction  instruments  of  the  highest  grade  should 
be  used  in  triangulation  of  this  class.  Repeating  theodolites  are  to  be  used  only 
when  the  station  to  be  occupied  is  in  such  a  position  as  to  be  diflBcult  of  occupation 



6o FIELD-WORK  OF  TRIANGLTLATION 

with  a  direction  instrument  or  when  there  is  doubt  of  the  instrument  support  being 
of  such  a  character  as  to  insure  that  the  movement  of  the  observer  about  the  in- 

strument does  not  disturb  it  in  azimuth.  Such  stations  usually  occur  on  lighthouses 
and  buildings. 

2.  Number  of  observations  —  Main  scheme  —  Direction  instrument.  —  In  making 
the  measurements  of  horizontal  directions  measure  each  direction  in  the  primary 
scheme  i6  times,  a  direct  and  reverse  reading  being  considered  one  measurement, 

and  i6  positions  of  the  circle  are  to  be  used,  corresponding  approximately  to  the 
following  readings  upon  the  initial  signal: 

Number. Reading. Number. Reading. 

I o  CO  40 9 
128  00  40 

2 15  01  50 10 
143  01  50 3 

30  03  10 
II 

158  03  ID 4 
45  04  20 12 173  04  20 5 64  00  40 

13 

192  00  40 
6 

79  01  5° 

14 

207  01  50 

7 
94  03  10 

IS 

22  2  03  ID 
8 109  04  20 16 

237  04  20 

3.  When  a  broken  series  is  observed,  the  missing  signals  are  to  be  observed  later 
in  connection  with  the  chosen  initial  or  with  some  other  one,  and  only  one,  of  the 
stations  already  observed  in  that  series.  With  this  system  of  observing  no  local 

adjustment  is  necessary.  Little  time  should  be  spent  in  waiting  for  the  doubtful 

signal  to  show.  If  it  is  not  showing  within,  say,  one  minute  of  when  wanted,  pass 
to  the  next.  A  saving  of  time  results  from  observing  many  or  all  of  the  signals  in 

each  series,  provided  there  are  no  long  waits  for  signals  to  show,  but  not  otherwise. 

4.  Standard  of  accuracy.  —  In  selecting  the  conditions  under  which  to  observe 
primary  directions,  proceed  upon  the  assumption  that  the  maximum  speed  con- 

sistent with  the  requirement  that  the  closing  error  of  a  single  triangle  in  the  primary 

scheme  shall  seldom  exceed  three  seconds,  and  that  the  average  closing  error  shall 

be  but  little  greater  than  one  second,  is  what  is  desired  rather  than  a  greater  ac- 
curacy than  that  indicated  with  slower  progress.  This  standard  of  accuracy  used 

in  connection  with  other  portions  of  these  instructions  defining  the  necessary 

strength  of  figures  and  frequency  of  bases  will  in  general  insure  that  the  probable 

error  of  any  base  line,  as  computed  from  an  adjacent  base,  is  about  i  part  in  88,000, 
and  that  the  actual  discrepancy  between  bases  is  always  less  than  i  part  in  25,000. 

5.  Rejections  —  Direction  observations.  —  The  limit  for  rejection  of  observations 
upon  directions  in  the  main  scheme  shall  be  5  seconds  from  the  mean.  No  observa- 

tion agreeing  with  the  mean  within  this  limit  is  to  be  rejected  unless  the  rejection  is 

made  at  the  time  of  taking  the  observation  and  for  some  other  reason  than  simply 
that  the  residual  is  large.  A  new  observation  is  to  be  substituted  for  the  rejected 

one  before  leaving  the  station,  if  possible  without  much  delay. 

II.   Vertical  measures  in  main  scheme.  —  At  each  station  in  the  main  scheme 
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vertical  measures  are  to  be  made  over  all  lines  in  the  main  scheme  radiating  from  it. 

These  vertical  measures  should  be  made  on  as  many  days  as  possible  during  the 

occupation  of  the  station,  but  in  no  case  should  the  occupation  of  the  station  be  pro- 
longed in  order  to  secure  such  measures.  Three  measures,  each  with  the  telescope 

in  both  the  dire.ct  and  the  reversed  positions,  on  each  day,  are  all  that  are  required. 

These  measures  may  be  made  at  any  time  between  ii.oo  a.m.  and  4.30  p.m.,  except 

that  in  no  case  should  primary  vertical  measures  be  made  within  one  hour  of  sun- 
set. It  is  desirable,  however,  with  a  view  of  avoiding  errors  due  to  diurnal  varia- 

tion of  refraction,  to  have  a  fixed  habit  of  observing  the  verticals  in  the  main  scheme 

at  a  certain  hour,  as,  for  example,  between  2  and  3  p.m.  If  the  vertical  measures  at 

a  station  are  made  by  the  micrometric]  method,  double  zenith  distance  measures 
shall  be  made  on  at  least  two  of  the  lines  radiating  from  that  station. 

13.  Marking  of  stations.  —  Every  station,  whether  it  is  in  the  main  scheme  or  is 
a  supplementary  or  intersection  station,  which  is  not  in  itself  a  permanent  mark,  as 

are  lighthouses,  church  spires,  cupolas,  towers,  large  chimneys,  sharp  peaks,  etc., 

shall  be  marked  in  a  permanent  manner.  At  least  one  reference  mark  of  a  perma- 
nent character  shall  be  established  not  less  than  10  meters  from  each  station  of  the 

main  scheme  and  accurately  referred  to  it  by  a  distance  and  direction.  Such  ref- 
erence marks  shall  preferably  be  established  on  fence  or  property  lines,  and  always 

in  a  locality  chosen  to  avoid  disturbance  by  cultivation,  erosion,  or  building.  It  is 
desirable  to  establish  such  reference  marks  at  all  marked  stations.  At  all  stations 

where  digging  is  feasible  both  underground  and  surface  marks  which  are  not  in  con- 
tact with  each  other  shall  be  established.  Wood  is  not  to  be  used  in  permanent 

marks. 

14.  Descriptions  of  stations.  —  Descriptions  shall  be  furnished  of  all  marked 
stations.  For  each  station  which  is  in  itself  a  mark,  as  are  lighthouses,  church 

spires,  cupolas,  towers,  large  chimneys,  sharp  peaks,  etc.,  either  a  description  must 
be  furnished,  or  the  records,  lists  of  directions,  and  lists  of  positions  must  be  made 

to  show  clearly  in  connection  with  each  point  by  special  words  or  phrases  if  neces- 
sary the  exact  point  of  the  structure  or  object  to  which  the  horizontal  and  vertical 

measures  refer.  Every  land  section  corner  connected  with  the  triangulation  must 

be  fully  described.  The  purpose  of  the  description  is  to  enable  one  who  is  un- 
familiar with  the  locality  to  find  the  exact  point  determined  as  the  station  and  to 

know  positively  that  he  has  found  it.  Nothing  should  be  put  into  the  description 
that  does  not  serve  this  purpose.  A  sketch  accompanying  the  description  should 
not  be  used  as  a  substitute  for  words.  All  essential  facts  which  can  be  stated  in 

words  should  be  so  stated,  even  though  they  are  also  shown  in  the  sketch. 

15.  Abstracts  and  duplicates.  —  The  field  abstracts  of  horizontal  directions  and 
vertical  measures  are  to  be  kept  up  and  checked  as  the  work  progresses,  and  all  notes 

as  to  eccentricities  of  signals  or  instrument,  of  height  of  point  observed  above 

ground,  etc.,  which  are  necessarj'  to  enable  the  computation  to  be  made,  are  to  be 
incorporated  in  the  abstracts.  As  soon  as  each  volume  of  the  original  record  has 
been  fully  abstracted  and  the  abstracts  checked,  it  is  to  be  sent  to  the  Office,  the 

corresponding  abstracts  being  retained  by  the  observer.  A  duplicate  of  the  de- 
scription of  stations  is  to  be  made.    If  the  original  descriptions  of  stations  are 
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written  in  the  record  books,  a  copy  of  these  descriptions  compiled  in  a  separate 
book  may  be  considered  the  duplicate  and  should  then  be  marked  as  such.  A 

duplicate  of  the  miscellaneous  notes  mentioned  above  may  also  be  made  if  con- 
sidered desirable.  No  other  duplicates  of  the  original  records  are  to  be  made. 

Pencil  originals  should  not  be  inked  over. 

i6.  Number  of  observations  —  Main  scheme  —  Repeating  theodolite.  —  If  a  te- 
peating  theodolite  is  used  for  observations  in  the  main  scheme,  corresponding  to 

those  indicated  in  paragraph  2,  make  the  observations  in  sets  of  six  repetitions  each. 
For  each  angle  measured  follow  each  set  of  six  repetitions  upon  an  angle  with  the 

telescope  in  the  direct  position  immediately  by  a  similar  set  of  six  on  the  explement 

of  the  angle  with  the  telescope  in  the  reversed  position.  It  is  not  necessary  to  re- 
verse the  telescope  during  any  set  of  six.  Make  the  total  number  of  sets  of  six 

repetitions  on  each  angle  ten  —  five  directly  on  the  angle  and  five  on  its  explement. 
Measure  only  the  single  angles  between  adjacent  lines  of  the  primary  scheme  and 
the  angle  necessary  to  close  the  horizon.  With  this  scheme  of  observing  no  local 

adjustment  is  necessary,  except  to  distribute  the  horizon  closure  uniformly  among 

the  angles  measured.  The  limit  of  rejection  corresponding  to  that  stated  in  para- 

graph 5  shall  be  for  a  set  of  six  repetitions  4"  from  the  mean. 

19.  Field  computations.  —  The  field  computations  are  to  be  carried  to  hun- 
dredths of  seconds  in  the  angles,  azimuths,  latitudes,  and  longitudes,  and  to  sevea 

places  in  the  logarithms.  The  field  computation  may  be  stopped  with  the  com- 
pletion of  the  lists  of  directions  for  all  stations  and  objects,  and  the  triangle  side 

computation  for  the  main  scheme  and  supplementary  stations,  unless  there  are 
special  reasons  for  carrying  it  further.  The  computation  to  this  point  should  be 

kept  up  as  closely  as  possible  as  the  work  progresses,  to  enable  the  observer  to  know 

that  the  observations  are  of  the  required  degree  of  accuracy.  No  least  square  ad- 
justments are  to  be  made  in  the  field.  All  of  the  computation,  taking  of  means, 

etc.,  which  is  done  in  the  record  books  and  the  lists  of  directions  should  be  so 

thoroughly  checked  by  some  person  other  than  the  one  who  originally  did  it  as  to 
make  it  unnecessary  to  examine  it  in  the  OfBce.  The  initials  of  the  person  making 

and  checking  the  computations  in  the  record  books  and  the  lists  of  directions  should 

be  signed  to  the  record  as  the  computation  and  checking  progress. 

Investigations  of  the  accumulated  error  in  the  azimuth  of  a 
chain  of  triangles  indicate  that  there  is  a  systematic  tendency 
of  the  triangulation  to  twist  in  azimuth,  due  to  unequal  heating 

of  the  different  parts  of  the  theodolite  by  the  sun.  In  day  ob- 
servations on  arcs  running  north  and  south  there  appears  to  be  a 

greater  accumulated  error  in  azimuth  on  the  east  side  of  the  chain 
than  on  the  west  side.  This  is  apparently  due  to  the  fact  that 
the  observations  were  made  chiefly  or  wholly  in  the  afternoon. 
Observations  made  at  night  show  less  difference  between  the  two 
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sides  of  a  chain  of  triangles.  The  errors  due  to  this  cause  may  be 

diminished  by  making  the  instrument  out  of  metal  having  a 

lower  coefficient  of  expansion,  such  as  nickel-iron,  and  by  in- 
creasing the  proportion  of  night  observations.  The  unequal 

heating  effect  may  also  be  diminished  in  day  observations  by 

turning  the  circle  180°  in  azimuth  between  sets.  The  folloAving 
set  of  pointings,  to  be  substituted  for  that  on  p.  60,  is  designed 

to  accomplish  this  purpose. 

CIRCLE  READINGS  FOR INITIAL  DIRECTIONS.* 

Posi- 
Telescope Teles:op ; 

Posi- 

Telescope Telescope 

tion. direct. reversed. tion. direct. reversed. 

I 0  00  40 180  00  40 9 128    CXD    40 
308  00  40 2 

195  01   SO IS  01  5° 10 
323  01  50 143  01   50 3 30  03    10 210  03  10 II 
158  03  10 

338  03    10 
4 225   04   20 

45  04  20 

12 

353  04  20 
173  04   20 5 64  cx>  40 244  00  40 

13 

192  00  40 
12  00  40 

6 259  01  50 
79  01  50 

14 

27  01  50 207  01    50 

7 
94  03  10 274  03  10 

IS 

222  03  10 

42  03    10 8 289  04  20 109  04  20 
16 

57  04  20 
237  04   20 

For  a  method  of  correcting  azimuths  for  the  accumulated  twist 

of  triangulation,  see  page  202. 

45.   Time  for  Measuring  Horizontal  Angles. 

It  was  formerly  the  practice  to  measure  angles  only  during  that 

part  of  the  day  when  signals  appear  steady,  that  is,  during  the 

latter  part  of  the  afternoon  and  sometimes  in  the  early  morning. 

In  1902  the  Coast  Survey  parties  were  instructed  to  observe  from 

3  P.M.  until  dark,  on  heliotropes,  and  then  to  continue,  with  the 

use  of  acetylene  lights,  until  11  p.m.  The  criterion  to  be  used  in 

deciding  whether  conditions  were  favorable  was  not  the  appear- 
ance of  the  signals  themselves,  but  the  variations  of  the  measures 

of  the  angles.  The  results  showed  that  angles  can  often  be 

measured  with  sufficient  accuracy  at  times  when  the  appearance 

of  the  signals  would  indicate  poor  conditions.  From  the  results 

of  this  season's  work  it  became  evident  that  night  observations 

*  From  Coast  and  Geodetic  Survey  Special  Publication  No.  ig. 
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are  somewhat  more  accurate  than  those  made  in  daylight.  Ob- 
serving at  night  is  also  more  economical  than  observing  in 

the  day  on  heHotropes,  because  at  night  the  observer  is  less 
dependent  upon  weather  conditions  (see  Art.  i6). 

46.  Forms  of  Record. 

The  following  are  forms  of  record  which  may  be  used  for  hori- 
zontal angles  of  triangulation. 

HORIZONTAL  ANGLES.     DIRECTION   INSTRUMENT. 

Station,  Corey  Hill.     Date,  May  21,  1907.     Observer,  A.  N.     Recorder, 
W.  R.  N.     Inst.  No.  31.     Set  No.  2. 

Station 
Time. 

Tele- scope. 
Micro. 

Circle. 
Run. 

Mean. 
Cor.  for 

run. 

Cor'd 

meas. observed. 
0     , 

.F. 
B. 

Blue  Hill 
k    m 

4  30 

Dir. 

Dir. 

A 
B 
C 

A 
B 
C 

15 

138 

01 

30 

Si-S 

540 
49  0 

So-S 

53-7 
48.5 

0.6 

0.3 

SI-2 20.2 

• 
Prospect 

Si-5 

20.9 

22.0 

18. 1 

50-9 

20.5 

21-5 

18.0 

20.3 

20.0 

HORIZONTAL  ANGLES.     REPEATING   INSTRUMENT. 

Station,  Corey  Hill.     Date,  May  21,  1907.     Observer,  J.  N.  B.      Instr. 
B.  &  B.,  No.  1567. 

Station. Time. Tel. 
Rep. 

Ver.  A. B. Mean. 
Angle. 

Mean. 

h    m 
0        I      II " " / 

a             1            II 

Blue  Hill 

3   20 

D 0 0    00    GO 00 GO 

to 
Prospect P.M. I 

123    28    10 
20 

IS 

b 

*20    49    40 

40 
40 

123    28   16.7 

R 0 

20    49    40 

40 

40 

b 0    00    10 

10. 

10 123    28   15.0 123      28     15.8 

*  'Note.  —  Since  the  angle  is  over  120  degrees  the  A  vernier  has  passed  360  degrees  twice  in  the 
six  repetitions.  In  computing  the  mean  we  divide  the  720  degrees  by  6  mentally  and  write  down 
12  — ,  then  divide  the  20  degrees  by  6,  add  the  whole  degrees  to  120,  and  then  divide  the  minutes 
and  seconds.  Observe  that  when  six  repetitions  are  used,  the  remainder,  when  dividing  the 

degrees  by  6,  gives  the  first  figure  of  the  minutes,  i.e.,  20  degrees  -5-6  =  3  degrees  in  the  mean, 
plus  2  degrees  to  be  carried  to  the  minutes  column  giving  20  minutes.  Similarly  in  dividing 
the  minutes  by  6  the  remainder  is  the  tens  place  in  the  seconds. 
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47.   Accuracy  Required. 

As  stated  in  paragraph  4  on  p.  60  the  degree  of  accuracy  re- 
quired on  the  Coast  Survey  triangulation  is  such  that  the  error 

of  closure  of  a  triangle  shall  seldom  exceed  3"  and  shall  average 
about  i".  The  following  list,  taken  at  random  from  a  longer 
list  in  Special  Publication  No.  19,  will  indicate  the  degree  of 
accuracy  actually  obtained  in  the  work  of  the  Coast  Survey. 

Section. 

Probable  error 
of  an  observed 

direction. 

Average 
closing 

error  of  a 
triangle. 

Max.  cor.  to 
direction. 

Maximum closing 

error  of  a 
triangle. 

Nevada  —  California   
New  England   

±0.23 

±0.26 
±0.30 ±0.34 

±0.36 ±0.45 

±0.53 

0.57 
0-7S 

0.78 

0.79 

1 .10 

113 

1 .22 

0.60 

1. 17 0.74 

0.84 

0.84 

I  .96 

2.03 

1-57 

2  .02 

2.73 

2.28 

2.69 

331 

6.35 

Eastern  Oblique  Arc   
Holton  Base  net   
Atlanta    base    to     Dauphin 

Island-base   
Lampasa  base  to  Seguin  base. 
Calif.  —  Washington  Arc   

48.   Reduction  to  Center. 

In  case  certain  lines  from  any  station  are  obstructed,  it  may 
become  necessary  to  set  the  instrument  over  a  point  at  one  side 
of  the  center,  called  an  eccentric  station,  and  to  measure  the 
angles  at  this  new  point. 
These  angles  are  measured 

with  the  same  degree  of  pre- 
cision as  though  the  instru- 
ment were  at  the  center. 

Before  such  angles  can  be 

used  for  solving  the  tri- 
angles, they  must  be  reduced 

to  the  values  they  would 

have  if  the  instrument  were  placed  at  the  center.  The  data  nec- 
essary for  the  calculation  include  the  approximate  distances  (D)  to 

the  points  sighted,  the  distance  from  the  center  mark  to  the  in- 
strument (d) ,  called  the  eccentric  distance,  and  the  angle  at  the  in- 
strument between  the  center  mark  and  each  of  the  signals  sighted. 

Fig.  34. 
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In  Fig.  34,  let  C  be  the  center,  E  the  instrument,  and  S  one  of 

the  signals.  The  angle  CES  =  a  (called  the  azimuth),  measured 

right-handed  from  the  center  to  the  distant  signals,  may  be 
calculated  for  each  signal  by  combining  angles  already  measured, 
provided  the  line  EC  has  been  connected  with  any  one  signal  by 
means  of  an  angle.  The  angle  S  is  the  change  in  the  direction, 
or  azimuth,  of  the  triangulation  hne  due  to  the  eccentricity  of  the 
instrument  station.     Solving  the  triangle  for  S,  we  have 

It  should  be  observed  that  the  algebraic  sign  of  sin  a  shows 
whether  the  azimuth  is  to  be  increased  or  diminished. 

The  following  example  shows  the  method  employed  when 
several  angles  are  to  be  reduced  to  center  simultaneously. 

EXAMPLE  OF  REDUCTION  TO  CENTER. 

Harpers  A 
d  =  i'".342  log  =  0.12755 

Eccentric  sta.  No.  i.  Colog  sin  i"  =  5.31443 
log  const.  =  5.44218 

Measured  angles:  —  Center  to  Smith's  Cupola  =  42°  14'  20",   Smith's 
Cupola    to  Cotton's  =  62°  33' 10". I,   Methodist    Church    to   Cotton's  = 
58°45'3i".o,    Cotton's    to    White    Flag  =  56°  22' 36".!,    White    Flag    to 
Baldwin's  =  43°  59'  57".4. 

The  azimuths  from  the  center  are  computed,  and  the  computation  is 
tabulated  as  follows: 

Station. 
Smith's Cupola. 

Methodist 
Church. 

Cotton's. 

White  Flag. 

Baldwin's. 

Azimuth   

Log  sin  az   
Colog  dist   
Log  const   

LogS"   

42°  14'  20". 0 

9  8275 
6.1052 

5.4422 

46°  01' 59". I 

9-8572 6.1025 

5-4422 

104°  47' 30" -I 

9-9853 
6,0640 

5-4422 

161°  10'  06". 2 

9.5090 
6.2672 

5.4422 

205°  10'  03". 6 

9. 6286  » 

6.0909 

5.4422 

1-3749 

+23".  7 

42°  14' 43". 7 

I . 4019 

+25".  2 

46°  02'  24". 3 

I -4915 

+31".  0 
104°  48'  01". I 

I. 2184 

+16".  5 

161°  10' 22". 7 

I. 1617  « -14" -5 

205°  09' 49". I 

S"   

Azimuth   

Reduced  angles:  —  Smith's  Cupola  to  Cotton's  =  62°  33'  17". 4,  Metho- 
dist Church  to  Cotton's  =  58°  45'  36". 8,  Cotton's  to  White  Flag  = 

56°  22'  21". 6,  White  Flag  to  Baldwin's  =  43°  59'  26".4. 

*  To  reduce  the  angle  to  seconds  we  should  divide  by  arc  i";  but  since  arc  i"  is 

nearly  equal  to  sin  i"  the  result  is  numerically  the  same  if  we  employ  the  latter. 
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If  the  distances  are  not  known  with  sufficient  accuracy  at  first, 
as  might  be  thecase  where  there  are  two  eccentric  stations  in  the 
same  triangle,  it  may  be  necessary  to  obtain  the  reduced  angle 
by  a  second  approximation.  After  the  angles  have  been  reduced 
to  center,  as  already  explained,  the  lengths  of  the  lines  may  be 

calculated  with  a  greater  degree  of  accuracy  than  at  the  begin- 
ning of  the  computation.  By  using  these  improved  values  of  the 

distances  the  reduction  to  center  may  be  repeated  and  better 
values  of  the  angles  obtained. 

49.   Phase  of  Signal. 
If  the  sights  are  taken  on  pole  signals,  and  the  illumination  is 

stronger  on  one  side  than  on  the  other,  as  it  usually  would  be  in 
bright   sunlight,    the   observer 
cannot  judge    the  position  of 
the  center  but  sights  the  center 
of  the  part  that  he  can  see. 

In  this  case  it  becomes  nec- 
essary to  correct  the  observed 

angles  for  this  effect,  which  is 

known  as  the  "correction  for 

phase."  If  the  shaded  portion 
of  the  pole  is  so  indistinct  that 
it  cannot  be  used  in  judging  the 
position  of  the  center,  then  the 
illuminated  portion  must  be 
bisected.  If  the  signal  pole  is 
cylindrical,  the  effect  of  phase 
on  the  measured  angle  may  be 
calculated  as  follows:  in  Fig. 
35,  representing  a  section  of 
the  signal  pole,  let  CS  be  a 
Hne  pointing  in  the  direction  of  the  sun,  and  CO  the  line  to 
the  observer.  The  limits  of  the  bright  portion  of  the  pole 
visible  to  the  observer  are  B  and  D.  By  measuring  the  angle 
between  the  sun  and  the  signal  the  observer  obtains  the  angle 
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ACS  =  a.    The  total  width  of  the  pole  is  2  r,  and  the  apparent 
width  is 

BE  =  r  +  r  cos  (180  —  a). 

The  decrease  in  width  of  the  object  is,  therefore, 

EF  =  2  r  —  r  {i  —  cos  a). 

The  angle  at  the  observing  station  subtended  by  this  distance 
is 

EF       _  r  (i  +  cos  a) 

D  '  arc  i"  ~    D'  arc  1" 
The  correction  to  the  observed  direction  is  one-half  this  amount 

since  in  each  case  the  space  is  bisected.    The  final  correction  is, 
therefore, 

50.  Measures  of  Vertical  Angles. 

The  method  of  determining  the  elevations  of  triangulation 

points  will  be  discussed  in  a  later  chapter,  but  since  the  field- 
work  of  measuring  the  vertical  angles  is  carried  on  in  connection 

with  the  measurement  of  the  horizontal  angles,  it  will  be  briefly 
discussed  here.  The  instrument  used  for  these  measurements 

may  be  a  repeating-circle  or  a  fixed  circle  read  by  microscopes. 
On  account  of  the  difficulty  of  ascertaining  the  exact  effect  of 

atmospheric  refraction,  vertical  angles  are  subject  to  much 

greater  errors  than  horizontal  angles.  A  relatively  small  num- 
ber of  measures  of  the  vertical  angle,  half  with  the  instrument 

direct  and  half  with  it  in  the  reversed  position,  is  sufficient  to  de- 
termine the  angle  as  closely  as  the  uncertainty  of  refraction  will 

permit.  Owing  to  diurnal  changes  in  the  amount  of  the  re- 
fraction, it  is  advisable  to  make  the  measurements  between 

II  A.M.  and  4  P.M.,  because  the  refraction  is  nearly  stationary 

during  these  hours.  About  an  hour  before  sunset  the  refraction 

is  very  uncertain.  In  recording  the  angle  it  is  essential  to  state 

exactly  the  height  of  the  instrument  above  the  station  mark  and 

also  the  exact  point  sighted,  so  that  the  angle  on  each  line  may  be 
reduced  to  that  of  the  line  between  the  two  station  marks. 
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Vertical  Circle. 
(Coast  and  Geodetic  Survey.) 
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The  vertical  angles  may  also  be  obtained  by  means  of  the 

micrometer  in  the  eye-piece  of  the  theodolite,  if  it  is  placed  so  as 
to  measure  angles  in  the  vertical  plane.  Micrometer  readings 

on  the  different  stations,  in  connection  with  readings  of  the 

spirit  level  on  the  alidade,  will  give  the  differences  in  vertical 

angles.  If  the  vertical  angle  of  any  one  station  is  known,  the 

others  may  be  determined. 

PROBLEMS 

Problem  i.  The  circle  of  an  alt-azimuth  instrument  is  graduated  into  lo-minute 
spaces.  The  pitch  of  the  micrometer  screw  is  such  that  two  turns  are  required  to 

move  the  hairs  from  one  graduation  to  the  next.  The  head  of  the  screw  is  divided 

into  minutes  and  each  minute  into  lo-second  spaces.  The  forward  reading  (on  the 

260°  10'  line)  is  4'  03";  the  back  reading  (on  the  260°  20'  line)  is  3'  55".  What  is 
the  run  of  this  micrometer?     What  is  the  correct  reading? 

Problem  2.  The  readings  of  a  striding  level  on  a  theodolite  show  that  the  hori- 
zontal axis  is  inclined  1.5  divisions,  the  left  end  being  higher.  What  error  will  this 

cause  in  the  azimuth  reading  on  the  pole  star,  at  an  altitude  of  41°  20',  if  the  value 
of  one  division  of  the  level  is  io".o? 

Problem  3.  If  a  horizontal  angle  is  measured  between  a  mark  12°  above  the 
horizon  and  bearing  N  45°  W,  and  the  pole  star,  41°  altitude,  what  is  the  error  in 
the  angle  produced  by  an  error  of  8"  to  the  right  in  the  (collimation)  adjustment 
of  the  vertical  cross-hair. 

Problem  4.  The  angle  between  stations  A  and  B  is  measured  from  station  E 

and  found  to  be  71°  10'  19". 5.  The  angle  from  0,  to  the  right,  to  station  A  is 

110°  15'.  The  distance  OE  is  7.460  meters.  OA  is  17,650  meters  and  OB  is  24,814 
meters.     Reduce  the  angle  to  the  center  O. 

Problem  5.  The  illuminated  portion  of  a  cylindrical  pole  is  bisected  with  the 
cross  hairs  of  a  theodolite.  The  angle  from  the  sun,  to  the  right,  to  this  signal  is 

130°  40'.  The  diameter  of  the  pole  is  6  inches.  The  distance  to  the  signal  is  8100 
meters.     What  is  the  correction  to  the  observed  direction  for  phase  of  the  signal? 



CHAPTER  IV 

ASTRONOMICAL  OBSERVATIONS 

51.  Astronomical  Observations  —  Definitions. 
In  every  trigonometric  survey,  whether  made  for  scientific 

purposes  or  for  the  purpose  of  making  maps,  it  is  essential  that 

some  of  the  triangulation  points  be  located  on  the  earth's  surface 
by  means  of  their  astronomical  coordinates.  In  determining  the 

earth's  size  and  figure  by  measuring  arcs  on  the  surface  it  is 
essential  that  the  curvature  be  determined  by  means  of  astro- 

nomical observations.  If  the  triangulation  is  used  to  control  the 

accuracy  of  a  topographical  survey,  the  astronomical  work  fur- 
nishes the  data  necessary  for  correctly  locating  and  orienting  the 

map  on  the  earth's  surface.  The  astronomical  data  also  furnish 
a  means  of  detecting  the  accumulated  twist  of  a  chain  of  triangu- 

lation, and  of  correcting  the  azimuth  at  intervals  along  the  line. 
Astronomical  observations  are  also  frequently  made  in  order  to 
supply  data  to  be  used  in  other  measurements,  as,  for  example, 
when  rating  chronometers  for  gravity  or  magnetic  observations. 

These  astronomical  observations  form  a  distinct  branch  of  geo- 
detic work. 

It  will  be  assumed  that  the  student  has  a  general  knowledge  of 
astronomy,  and  only  such  definitions  will  be  given  as  are  essential 
in  viewing  the  subject  from  the  standpoint  of  the  geodesist.  The 

astronomical  observations  which  it  is  important  for  us  to  con- 
sider include  the  determination  of  the  following  four  coordinates: 

(i)  time,  (2)  longitude,  (3)  latitude,  and  (4)  azimuth.  Before 

describing  the  instruments  and  methods,  we  will  define  the  fol- 
lowing terms  which  are  to  be  employed. 

The  vertical  at  any  point  on  the  earth's  surface  {OZ,  Fig.  36) 
is  the  direction  in  which  the  force  of  gravity  acts  at  that  point. 

71 
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In  general  it  does  not  perfectly  coincide  with  the  normal  to  the 
spheroidal  surface,  and  hence  there  is  a  difference  between  the 
astronomical  coordinates  and  the  geodetic  coordinates.  The 
deflection  of  the  plumb  line  from  the  normal  at  any  place  is  called 
the  station  error.  The  point  vertically  overhead  (Z)  is  called 
the  zenith.    We  may  consider  that  the  universe  is  bounded  by  a 
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sphere  of  infinite  radius,  and  that  the  zenith  is  the  point  where 
the  vertical  pierces  that  sphere.  The  horizon  {NEHS)  is  the 

great  circle  on  the  celestial  sphere  which  is  everywhere  90°  from 
the  zenith.  Its  plane  passes  through  the  observer  and  is  per- 

pendicular to  the  vertical  line.  Any  plane  which  contains  the 
vertical  line  cuts  from  the  sphere  a  vertical  circle  (HDZ). 

The  earth's  rotation  axis,  prolonged,  pierces  the  sphere  in  two 
points,  called  the  north  celestial  pole  (P)  and  the  south  celestial 

pole  {P').     The  great  circle  which  is  everywhere  90°  from  the 
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poles  is  the  celestial  equator  (QVR).  Any  plane  through  the 

axis  or  parallel  to  it  cuts  from  the  sphere  an  hour  circle  {PVP'). 
The  vertical  circle  which  passes  through  the  celestial  pole  is  called 

the  meridian  iSQZ).  If  the  vertical  does  not  intersect  the  earth's 
axis,  the  meridian  plane  cannot  contain  the  axis  but  is  parallel  to 

it.  The  prime  vertical  is  a  vertical  circle  perpendicular  to  the 

meridian.  The  ecliptic  is  a  great  circle  cut  by  the  plane  of  the 

orbital  motion  of  the  earth  {MVL).  That  point  on  the  sphere 

where  the  ecliptic  and  the  equator  intersect,  and  where  the  sun 

passes  (in  March)  from  the  southern  to  the  northern  hemisphere, 
is  called  the  vernal  equinox. 

The  altitude  Qi)  of  a  point  is  its  angular  distance  above  the 

horizon.  Its  zenith  distance  (f )  is  the  complement  of  the  altitude. 

The  azimuth  (Z)  of  a  point  is  the  horizontal  angle  between  the 

meridian  and  the  point.  It  is  usually  reckoned  from  the  south 

point  of  the  horizon,  right-handed,  from  o°  to  360°.  The  de- 
clination (5)  of  a  point  is  its  angular  distance  north  (+)  or  south 

(  — )  of  the  equator.  Its  polar  distance  {p)  is  the  complement  of 
the  declination.  The  hour  angle  (t)  of  a  point  is  the  arc  of  the 

equator  measured  from  the  meridian  westward  to  the  hour  circle 

through  the  point.  The  right  ascension  (Q:)^is  the  arc  of^the 

equator  measured  from  the  vernal  equinox  eastward  to  the  hour 

circle  through  the  point. 

The  astronomical  latitude  *  {(j>)  of  a  place  is  the  angular  dis- 
tance of  the  zenith  north  or  south  of  the  equator,  or,  in  other 

words,  the  declination  of  the  zenith.  The  longitude  (X)  of  a 

place  is  the  arc  of  the  equator  between  the  observer's  meridian 
and  a  primary  meridian,  as  Greenwich  or  Washington. 

52.  The  Determination  of  Time. 

The  determination  of  time,  practically  considered,  means  the 
determination  of  the  error  of  a  chronometer  on  the  local  sidereal 

time  at  the  station.  The  sidereal  time  (S)  at  any  instant  is  the 

hour  angle  of  the  vernal  equinox ;  it  is  usually  expressed  in  hours, 

minutes,  and  seconds.     From  a  consideration  of  the  definitions 

*  For  goedetic  latitude  see  p.  123. 
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of  sidereal  time,  hour  angle,  and  right  ascension  it  is  evident  that 

the  first  equals  the  sum  of  the  other  two;  that  is, 

S  =  a-\-L  [15] 

When  the  star  is  on  the  meridian,  t  is  obviously  equal  to  zero, 
and  we  have 

S  =  a,  [16] 

that  is,  the  right  ascension  of  any  star  is  equal  to  the  sidereal 

time  at  the  instant  when  that  star  is  passing  the  meridian.  If 

we  note  the  chronometer  reading  when  a  certain  star  is  passing 

the  meridian,  we  know  that  the  local  sidereal  time  (or  true  chro- 

nometer reading)  at  that  instant  is  the  same  as  the  right  ascension 

of  that  star  as  given  for  that  date  in  the  Ephemeris,*  and  that  the 
error  of  the  chronometer  is  the  difference  between  the  two.  The 

determination  of  time  with  a  transit  mounted  in  the  plane  of  the 

meridian  depends  upon  the  foregoing  principle. 
53.   The  Portable  Astronomical  Transit. 

The  instrument  chiefly  used  for  determining  time  and  longitude 
in  geodetic  work  is  the  portable  transit.  This  class  of  work 

necessitates  carrying  the  instrument  to  many  stations  located 

in  places  which  are  difficult  to  reach;  hence  it  should  be  light 

enough  to  be  easily  transported.  The  small  size  of  the  transit, 

however,  does  not  necessarily  imply  inferior  accuracy  in  the 

results;  it  is  found  by  experience  that  comparatively  small  in- 

struments, when  properly  handled,  give  results  of  great  accuracy. 

Indeed,  the  very  fact  that  the  instrument  is  light  is  a  point  in  its 
favor,  for  this  makes  it  easier  to  reverse,  and  obviates  certain 

difficulties  encountered  in  using  large  instruments  in  observa- 

tories, for  example,  the  error  due  to  flexure,  or  those  due  to 

temporary  strains  caused  by  reversal  of  the  instrument.  The 

portable  transit  is  usually  mounted  on  a  brick  or  concrete  pier, 
to  which  the  base  of  the  instrument  is  firmly  cemented. 

The  transit  instrument  itself  consists  of  a  telescope  with  a 

*  The  American  Ephemeris  and  Nautical  Almanac,  published  by  the  Navy 
Department. 
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Fig.  37.     Portable  Transit  (with  transit  micrometer.) 
(Coast  and  Geodetic  Survey.) 
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rotation  axis  rigidly  attached  at  right  angles  to  it;  this  axis  termi- 
nates in  pivots  which  rest  in  wye  bearings  at  the  upper  ends  of  a 

pair  of  standards.  A  stride  level  is  provided  for  measuring  the 

inchnation  of  the  rotation  axis.  The  axis  of  collimation,  which 

is  a  line  through  the  optical  center  of  the  objective  and  perpen- 
dicular to  the  rotation  axis,  rotates  in  a  vertical  plane  when  the 

horizontal  axis  is  truly  level.  For  the  purpose  of  determining 

the  time  the  instrument  may  be  set  in  any  vertical  plane,  for 

example,  the  vertical  plane  through  a  close  circumpolar  star;  but 

in  this  country  it  is  used  almost  exclusively  in  the  plane  of  the 
meridian. 

Fig.  37  shows  a  portable  astronomical  transit  used  for  the 
determination  of  time  and  longitude  by  the  Coast  and  Geodetic 

Survey.  The  focal  length  is  94  cm,  the  aperture  76  mm,  and 

the  magnifying  power  104  diameters. 

54.  The  Reticle. 

In  the  old  style  of  transit  the  reticle  consisted  of  several  closely 

spaced  vertical  spider  threads 
or  of  hues  ruled  on  glass,  and 
two  horizontal  threads  or  lines 

to  limit  the  portion  of  the 

vertical  threads  used  for  obser- 

vations. A  common  arrange- 
ment of  the  vertical  threads, 

when  the  chronograph  is  to  be 

used  for  recording  the  observed 

time,  is  shown  in  Fig.  38,  the 

smallest  intervals  correspond- 

ing to  about  2.5*  of  time  for  an 

equatorial  star. 
55.  Transit  Micrometer. 
The  hand-driven  transit  micrometer  has  now  replaced  the  old 

style  of  reticle  on  the  instruments  of  the  United  States  Coast 

Survey.  In  this  instrument  (Fig.  39)  a  single  vertical  thread  is 

made  to  traverse  the  field  of  the  telescope  at  such  a  speed  that  it 

Fig.  38. 
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Fig.  39.    The  Transit  Micrometer. 
(Coast  and  Geodetic  Survey.) 
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continually  bisects  the  star  that  is  being  observed.  The  record 

on  the  chronograph  of  the  passage  of  the  star  over  certain  fixed 

points  in  the  field  is  made  automatically  by  means  of  an  electric 

circuit.  An  automatic  cut-out  is  so  arranged  as  to  keep  the 
circuit  broken  except  during  four  revolutions  of  the  screw  in  the 

central  part  of  the  field.  The  contact  points  are  placed  so  as  to 

record  twenty  observations  on  the  star,  arranged  in  four  groups. 
The  observer  has  simply  to  set  the  thread  on  the  star  and  follow 

it  until  it  has  passed  beyond  the  range  of  observation.  The 

observer  does  not  know  exactly  when  the  observations  are  being 

made;  he  simply  watches  the  thread  and  the  star  and  keeps  the 

bisection  as  nearly  perfect  as  he  can.  It  is  necessary  to  use  both 

hands  in  order  to  give  the  thread  a  steady  motion.  The  result 

of  these  observations  is  the  same  as  though  the  observer  had 

noted  accurately  the  time  of  passage  of  the  star  over  20  vertical 

threads.  The  great  advantage  of  the  instrument  is  that  the 

large  personal  error  due  to  estimating  times  of  transit  over  the 

threads  is  almost  wholly  eliminated.  A  further  advantage  is 

that  20  observations  may  be  made  in  about  ten  seconds,  on  an 

equatorial  star,  thus  permitting  observations  on  stars  culmi- 
nating in  quick  succession. 

56.  Illumination. 

The  field  of  the  telescope  is  illuminated  by  means  of  a  lamp  or 

an  electric  bulb  which  sends  light  through  the  hollow  axis  of  the 

instnunent  to  a  mirror  at  the  center  of  the  telescope,  which  re- 
flects it  down  the  telescope  tube  to  the  reticle.  The  threads 

appear  as  black  fines  against  a  bright  field. 

57.  Chronograph. 

The  chronograph  is  a  registering  apparatus  driven  by  clock- 
work, and  connected  electrically  with  a  chronometer  and  with 

either  the  transit  micrometer  or  an  observing  key.  The  record 

is  made  on  a  sheet  of  paper  wound  around  a  drum  which  revolves 

once  per  minute.  A  pen  fastened  to  the  armature  of  an  electro- 
magnet is  carried  by  a  screw  in  a  direction  parallel  to  the  axis 

of  the  drum.     These  combined  motions  cause  the  pen  to  draw  a 
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line  spirally  around  the  drum.  When  the  sheet  is  laid  flat,  the 

record  appears  as  a  series  of  straight  parallel  lines.  The  chro- 
nometer breaks  the  circuit  once  per  second  (or  once  per  two  seconds) , 

and  this  break  causes  the  armature  to  move  the  pen  to  one  side 

and  make  a  small  notch  on  the  record.  The  times  of  passage  of 
stars  over  the  threads  of  the  transit  are  also  recorded  in  a  similar 

Fig.  40.     Chronograph. 
(Coast  and  Geodetic  Survey.) 

manner.  The  character  of  the  two  kinds  of  marks  is  usually 

dissimilar,  and  they  may  easily  be  distinguished.  If  any  one  of 

the  chronometer  marks  on  the  record  sheet  is  identified,  then  the 

chronometer  time  of  every  mark  on  the  sheet  becomes  known, 
and  the  determination  of  the  fraction  of  a  second  for  each  obser- 

vation is  simply  a  matter  of  scaling  ofT  the  position  of  the  corre- 
sponding mark.  A  convenient  way  to  mark  the  time  without 

disturbing  the  sheet  is  to  make  notches  on  the  sheet  by  means 
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of  the  observing  key,  the  number  of  marks  so  made  showing  the 

number  of  some  minute  of  the  chronometer  reading.  The  speed 

and  the  diameter  of  the  cyhnder  are  usually  such  as  to  make  one 

second  of  time  occupy  a  space  of  one  centimeter.  Fig.  40  shows 

a  chronograph  such  as  is  used  in  longitude  observations. 

58.   Circuits. 

The  arrangements  of  circuits  for  operating  the  chronograph 

are  shown  in  Figs.  41  and  42.     The  chronometer  is  placed  in  a 
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Fig,  43.    Chronograph  Record. 

separate  circuit  having  a  battery  of  only  one  cell,  in  order  to  avoid 

injury  to  the  mechanism,  and  operates  the  chronograph  circuit 

through  the  points  of  a  relay.  The  transit  micrometer  operates 

on  the  make-circuit,  which  is  converted  into  breaks  by  a  relay. 
If  a  key  is  used,  it  replaces  the  micrometer  relay  and  breaks  the 

circuit  when  the  key  is  pressed. 

Fig.  43  shows  a  portion  of  a  chronograph  record. 
59.   Adjustment  of  the  Transit. 

In  placing  the  transit  on  the  supporting  pier  before  adjusting 

it  in  the  meridian,  the  base  of  the  instrument  must  be  placed  so 
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nearly  in  the  meridian  that  all  further  adjustment  in  azimuth 
may  be  made  by  the  adjusting  screws  provided  for  this  purpose. 
The  foot  plates  should  then  be  cemented  to  the  pier.  The  tele- 

scope is  focused  as  in  an  engineer's  transit  —  first  the  eye- 
piece, then  the  objective.  A  distant  terrestrial  object  may  be 

used  for  the  first  trial,  but  the  final  focusing  should  be  done  at 
night  on  the  stars.  A  difference  is  usually  noticed  between  the 
focus  required  by  day  and  that  found  at  night  when  artificial 
light  is  used. 

The  striding  level  and  the  horizontal  axis  may  be  adjusted 
simultaneously  by  placing  the  level  in  position,  reading  both 
ends  of  the  bubble,  then  reversing  it,  end  for  end,  and  taJcing 
another  set  of  readings.  Half  the  displacement  of  the  bubble 
may  be  corrected  by  adjustment  of  the  level  and  half  by  leveling 
the  axis. 

The  verticality  of  the  threads  or  the  micrometer  line  is  tested 
by  rotating  the  telescope  slightly  about  its  horizontal  axis  and 
noting  whether  a  fixed  object  remains  continuously  on  the  thread 

as  it  traverses  the  field  of  view.  Adjustment  is  made  by  rotat- 
ing the  diaphragm  or  the  micrometer  box  until  this  condition  is 

fulfilled. 

The  collimation  is  adjusted  by  placing  the  middle  Hne  of  the 
reticle  or  the  mean  position  of  the  micrometer  line  as  nearly  as 
possible  in  the  colUmation  axis.  To  test  this,  point  the  wire  on 
some  object,  reverse  the  telescope  in  its  supports  (axis  end  for 
end),  and  see  if  the  object  is  still  sighted.  If  it  is  not,  bring  the 
wire  halfway  back  by  means  of  the  lateral  adjusting  screws. 

The  finder  circles  should  be  tested  to  see  if  they  read  zero  when 
the  collimation  axis  is  vertical.  Point  on  some  object,  level  the 
bubble,  and  read  the  circle.  Reverse  the  telescope,  point  on  the 
same  object,  and  repeat  the  readings.  The  mean  reading  is  the 
true  zenith  distance,  and  half  the  difference  between  the  two 
readings  is  the  error  of  adjustment.  Set  the  vernier  to  read  the 
true  zenith  distance,  sight  the  object  again,  and  then  center  the 
bubble  by  means  of  the  adjusting  screws. 
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To  place  the  line  of  collimation  in  the  meridian,  first  determine 
a  rough  chronometer  correction  by  leveling  the  axis  and  setting 
the  circles  for  the  zenith  distance  of  some  star  which  is  near  the 

zenith  and  which  is  about  to  culminate.  If  the  (sidereal) 
chronometer  is  nearly  regulated  to  local  sidereal  time,  the  right 

ascension  of  such  a  star  will  be  nearly  the  same  as  the  chronom- 
eter reading.  If  the  chronometer  is  not  regulated  at  all,  it  may 

be  set  approximately  right  by  calculating  the  sidereal  time  cor- 
responding to  the  mean  time  as  indicated  by  a  watch.  An 

error  of  one  or  two  minutes  will  not  cause  great  inconvenience, 
as  all  that  is  necessary  is  to  identify  the  star  and  begin  observing 
before  it  has  passed.  The  time  at  which  this  star  will  pass  the 
middle  vertical  thread  must  necessarily  be  very  close  to  the  true 
sidereal  time  (right  ascension  of  star),  because  near  the  zenith 
the  effect  of  the  azimuth  error  on  the  observed  time  is  very  small. 
The  difference  between  the  right  ascension  of  the  star  and  the 
chronometer  reading  is  an  approximate  value  of  the  chronometer 
error.  Using  this  value  of  the  chronometer  error,  calculate  the 

chronometer  time  when  some  slowly-moving  (circumpolar)  star 
will  pass  the  meridian.  When  this  calculated  time  arrives,  point 
the  middle  thread  or  the  micrometer  thread  on  the  star,  using 
the  azimuth  adjustment  screws.  This  places  the  instrument 
nearly  in  the  meridian.  A  repetition  of  the  whole  process  (on  a 
different  pair  of  stars)  will  give  a  still  closer  approximation. 

It  is  not  necessary  or  desirable  to  spend  much  time  in  re- 
ducing the  errors  of  azimuth,  level,  and  collimation  to  very  small 

quantities.  They  should  be  so  small  as  to  cause  no  inconvenience 
in  making  the  observations  and  in  computing  the  results,  but 
since  they  must  be  determined  and  allowed  for  in  any  case,  the 
final  result  is  quite  as  accurate  if  the  errors  themselves  are  not 
extremely  small. 

60.   Selecting  the  Stars  for  Time  Observations. 

There  are  two  general  methods  of  selecting  the  stars  to  be  used 

for  a  time  determination.  The  older  method  requires  observa- 
tions on  ten  stars,  five  with  the  axis  of  the  telescope  in  one  posi- 
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tion  (say  illumination  or  clamp  east)  and  five  with  the  a^^is  re- 
versed (illumination  or  clamp  west).  In  each  half -set  one  of  the 

stars  is  a  slow-moving  one,  that  is,  one  situated  near  the  pole. 
Of  the  remaining  four  stars  in  each  half -set  two  should  preferably 
be  north  of  the  zenith  and  two  south  of  the  zenith,  and  in  such 
positions  that  their  azimuth  errors  balance  each  other,  that  is, 
their  A  factors  (see  Art.  66)  should  add  up  to  zero. 

In  the  more  modern  method,  used  with  the  transit  micrometer, 

twelve  stars  are  employed,  six  in  each  position  of  the  axis.  None 
of  these  is  near  the  pole,  but  their  positions  are  so  chosen  as  to 
make  the  algebraic  sum  of  their  A  factors  nearly  equal  to  zero. 

By  the  older  method  the  error  in  azimuth  adjustment  is  more 
accurately  determined,  but  with  a  proper  selection  of  stars  the 
value  of  the  azimuth  correction  need  not  be  determined  so  ac- 

curately, because  it  has  a  relatively  small  effect  upon  the  com- 
puted chronometer  correction. 

In  preparing  for  observations  a  list  of  stars  should  first  be  made 
out,  giving  the  name  or  number  of  each  star,  its  magnitude,  right 
ascension,  declination,  and  zenith  distance,  together  with  the 
star  factors  depending  upon  its  position,  as  explained  later.  The 
declination  of  the  stars  chosen  should  be  such  that  the  algebraic 
sum  of  the  A  factors  is  less  than  unity.  It  is  desirable  that  the 
list  contain  as  many  stars  per  hour  as  possible,  but  sufficient 
time  must  be  allowed  for  reading  the  stride  level,  reversing  the 

instrument,  making  records,  etc.  The  telescope  should  be  re- 
versed before  each  half-set.  In  preparing  this  list  the  zenith 

distance  of  a  star  is  computed  by  the  relation 

r  =  0  -  5,  [17] 

where  f  is  the  zenith  distance  (positive  if  south  of  the  zenith),  0 
is  the  latitude,  and  5  is  the  declination  (positive  for  stars  north 
of  the  equator). 

61.  Making  the  Observations. 

In  beginning  the  observations,  set  the  vernier  of  the  finding 
circle  at  the  zenith  distance  of  the  first  star  and  bring  the  bubble 
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to  the  center  of  its  scale  by  moving  the  whole  telescope.  The 
clamp  had  better  not  be  used  if  the  telescope  can  be  relied  upon 
to  remain  in  position  when  undamped.  When  the  star  appears 
in  the  field,  bring  it  between  the  two  horizontal  hairs  by  tapping 
the  telescope  with  the  finger.  Set  the  micrometer  Hne  on  the 
star  and  keep  it  bisected  until  the  observations  (4  turns  of  screw) 

are  completed.  If  the  instrument  is  not  provided  with  a  microm- 
eter, the  observer  simply  presses  the  observing  key  as  the  star 

passes  each  of  the  vertical  threads.  When  the  observations  are 
made  by  the  key  method,  the  observer  attempts  to  press  the  key 
as  soon  as  possible  after  the  star  is  actually  bisected  by  the  wire. 
In  doing  this  he  makes  an  error  which  tends  to  become  constant 

as  the  observer  gains  in  experience.  This  is  known  as  his  per- 
sonal equation.  Since  the  personal  equation  depends  chiefly  upon 

the  rapidity  and  uniformity  with  which  the  observer  is  able  to 
record  his  observations,  rather  than  upon  his  ability  to  bisect  the 

star's  image,  the  use  of  the  transit  micrometer  very  nearly  elimi- 
nates this  error. 

After  half  the  stars  in  one  set  have  been  observed,  the  axis 
should  be  reversed,  end  for  end,  in  the  supports.  The  striding 
level  should  be  read  one  or  more  times  during  each  half-set.  If 
the  pivots  are  not  truly  circular  in  section,  the  average  incHna- 
tion  of  the  axis  may  be  found  by  taking  level  readings  with  the 
telescope  set  at  difTerent  zenith  distances,  both  north  and  south. 

The  striding  level  should  be  used  with  great  care,  because  the 
level  corrections  may  be  relatively  large  and  cannot  be  eliminated 
by  the  method  of  observing,  as  in  case  of  the  collimation  error 
and,  to  some  extent  also,  the  azimuth  error. 

Following  is  a  record  of  a  set  of  observations  as  read  from  the 

chronograph  sheet,  together  with  the  readings  of  the  striding 
level.  (See  United  States  Coast  and  Geodetic  Survey  Special 
Publication  No.  14,  p.  21.) 
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Station,  Key  West.  Date,  Feb.  14,  1907.  Instrument,  transit  No.  2, 
with  transit  micrometer.  Observer,  J.  S.  Hill.  Recorder,  J.  S.  Hill. 
Chronometer,  Sidereal  1824. 
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+IS.03 
+15.00 

+15.02 
*  R,  correction  for  rate,  is  negligible  in  this  time  set. 
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62.  The  Corrections. 

The  corrections  that  have  to  be  applied  to  the  mean  of  the 
observed  times,  to  reduce  it  to  the  time  corresponding  to  the 
meridian  passage  are  those  for  (i)  level,  (2)  collimation,  (3) 
azimuth,  (4)  rate,  and  (5)  diurnal  aberration. 

63.  Level  Correction. 
The  level  correction  to  any  observed  time,  Bb,  is  made  up  of 

the  constant  b,  depending  upon  the  level  readings,  and  a  factor 

B,  depending  upon  the  position  of  the  star  and  upon  the  observer's 
latitude.  If  w  and  e  are  the  readings  of  the  west  and  east  end 

of  the  level  bubble  in  one  position,  and  w'  and  e'  the  readings  for 
the  second  position,  then  for  the  first  position,  the  inclination  of 

the  axis  of  the  level  in  terms  of  scale  divisions  is  ̂   (t^;  —  e) ;  for 

the  second  position  it  is  |  (tv'  —  e') .  The  mean  of  the  two  is  the 
inclination  of  the  transit  axis,  free  from  errors  of  adjustment  of 
the  level.     If  b  represents  the  inclination,  then 

b  =  UH^-e)-hhW  -  e')] 

If  d  is  the  value  of  one  division  of  the  level  scale  expressed  in 
seconds  of  arc,  then  b  in  seconds  of  time  is 

b  =  -f[{w-\-w')^(e  +  en  [18] 00 

in  which  the  scale  di\'isions  are  supposed  to  be  numbered  each 
way  from  zero;  b  is  positive  if  the  west  end  of  the  axis  is  too  high. 
If,  however,  the  divisions  of  the  level  are  numbered  continuously 
from  one  end  of  the  tube  to  the  other,  the  equation  is 

b  =  £[{w-  w')  +  {e-  e')],  [19] 

in  wliich  the  primed  letters  refer  to  that  position  of  the  level  in 
which  the  zero  of  the  scale  is  west. 

64.  Pivot  Inequality. 

If  the  pivots  are  found  to  be  unequal  in  diameter,  then  the 
apparent  inclination  as  found  from  the  level  readings  must  be 
corrected  by  a  quantity  p,  which  is  the  inequaUty  as  found  by  a 



ASTRONOMICAL  OBSERVATIONS 

special  set  of  readings  of  the  level.  If  /3e  and  /3„,  are  the  inclina- 
tions as  derived  from  the  level  readings,  and  be  and  by,  the  true 

inclinations  for  the  two  positions  of  the  axis, 

then 

also 

and 

P  = 

be  = 

b 

4 

+  P 

=   Pe  +  p       i [20] 

To  determine  the  effect  of  this  inclination  error  on  the  observed 

lime  of  transit  of  any  star,  let  S  (Fig.  44)  be  the  star  observed, 
and  let  HS  be  the  path  of  the  vertical  thread,  incUned  to  the  true 

vertical  at  an  angle  b.  In  the  triangle  PHS  the  angle  at  P  is  the 
error  which  is  to  be  computed.  The  angle  at  Z?  is  &;  PS  is  the 

polar  distance,  or  90°  —  5;  HS  is  the  altitude  (nearly),  or  90°  —  f. 
From  the  triangle  PHS, 

sin  P      sin  HS 

or 

sin  H      sin  PS 

P  =  b  cos  f  sec  5  (approx.) 
=  b'B. 

[21] 

The  factor  B  may  be  taken  from  Table  III  when  the  zenith 
distance  and  the  declination  of  the  star  are  known. 
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65.   Collimation  Correction. 
The  correction  to  the  observed  time  is  cC,  c  being  the  constant 

angle  between  the  collimation  axis  and  the  mean  thread,  expressed 
in  seconds  of  time,  and  C  the  collimation  factor,  varying  with  the 

position  of  the  star.  The  colli- 
mation constant  c  may  be  found 

by  special  observations,  but  is 
usually  computed  from  the  time 

observations  themselves,  as  ex- 
plained later;  it  is  considered 

positive  if  the  line  of  sight  is 
east  of  the  true  position  when 
the  clamp  is  east. 

In  Fig.  45,  P  is  the  pole,  5  the  star,  PN  the  meridian,  and  SL 

the  trace  of  the  thread  all  points  of  which  are  at  the  same  dis- 
tance (c)  from  PN.  The  error  is  the  angle  P.  Since  the  angle 

N  is  9o°3 sin  SN      sin  c 

Fig.  45. 

sinP  = 
or 

sin  PS      cos  5 

P  =  c  sec  5  =  cC. [22] 

The  collimation  factor  C  will  be  found  in  Table  III. 
66.  Azimuth  Correction. 

The  error  of  setting  the  instrument  in  the  meridian  is  measured 
by  the  constant  a,  the  azimuth  of  the  axis  of  collimation  expressed 
in  seconds  of  time.  This  constant  is  derived  from  the  varia- 

tions in  the  observations  themselves.  In  Fig.  46,  P  is  the  pole,  Z 

the  zenith,  and  5  the  star.  In  the  triangle  PZS,  P  is  the  re- 

quired correction,  and  S'ZS  is  a,  the  azimuth  error.  Applying 
the  law  of  sines, 

sin  P         sin  5 

or 
sin  S'ZS      cos  5 

P  =  a  sin  f  sec  5 
=  a'  A. 

[23] 

The  azimuth  factor  A  may  be  taken  from  Table  III.    The  con- 
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stant  a  is  positive  when  the  plane  of  the  axis  of  collimation  is  east 

of  south.  A  is  positive  for  all  stars  except  those  between  the 
zenith  and  the  pole. 

N 

67.  Rate  Correction. 

In  order  to  compute  these  corrections  it  is  necessary  to  reduce 
all  observations  of  the  chronometer  correction  to  some  definite 

epoch,  for  example,  the  mean  of  all  the  observed  times,  so  that 
variations  in  the  chronometer  correction  itself  will  not  affect  the 

determination  of  the  transit  errors.  This  is  done  by  applying 
the  correction 

R  =  {t-  To)  Th,  [24] 

where  /  is  the  chronometer  time  of  transit. 

To  is  the  mean  epoch  of  the  set, 

and    Th  is  the  hourly  rate  of  the  chronometer,  positive  if  losing, 

negative  if  gaining. 
68.  Diurnal  Aberration. 

The  motion  of  the  observer  due  to  the  diurnal  motion  of  the 

earth  makes  all  stars  appear  farther  east  than  they  actually  are; 

in  other  words  it  apparently  increases  their  right  ascensions.  The 

amount  of  the  correction  is  expressed  by  the  equation 

K  =  o*.02i  cos  0  sec  8.  [25] 



FORMULA  FOR  THE  CHRONOMETER   CORRECTION  91 

This  formula  may  be  derived  as  follows:  the  velocity  of  a  point 

on  the  earth's  equator  (toward  the  east)  is  0.288  mile  per  second. 
For  any  other  latitude  the  velocity  is  0.288  cos  </>  mile  per  second. 

The  velocity  of  light  is  186,000  miles  per  second,  and  the  angular 

Equator Fig.  47. 

displacement  (k)  of  the  star  toward  the  east  point  of  the  horizon 

is  therefore  equal  to  tan"i  —   — .     The  effect  on  the  ob- 186,000 

served  time  is  the  angle  k  at  the  pole,  Fig.  47.     Hence 
sm/c 

sin  90        cos  5 

or  K  =  0^.3 1 9  cos  0  sec  5 
=  o*.o2i  cos  0  sec  8. 

Values  of  this  correction  will  be  found  in  Table  IV. 

69.  Formula  for  the  Chronometer  Correction. 

The  true  sidereal  time,  or  right  ascension  of  the  star,  is  given 
by  the  equation 

a  =  t  -^  AT  +  K  +  R  -{-  Aa  +  Bb  +  Cc,  [26] 
in  which  t  is  the  mean  of  the  observed  transits  and  AT  is  the 

chronometer  correction.  Since  the  corrections  for  aberration, 

rate,  and  inclination  may  be  found  directly,  they  are  applied  to 
t  at  once.     If  we  call  h  the  value  of  t  thus  corrected,  then 

a  —  h  =  AT  -i-  Aa  -{-  Cc, 

or  AT  =  {a-  h)  -  Aa-  Cc.  [27] 



92 

ASTRONOMICAL  OBSERVATIONS 

70.  Method  of  Deriving  Constants  a  and  c,  and  the  Chro- 
nometer Correction,  AT. 

The  method  shown  in  the  following  table  is  the  one  used  when 
the  observations  are  made  with  the  transit  micronometer  and 

when  the  latitude  is  less  than  50°.  For  greater  latitudes  the 
observations  are  reduced  by  the  method  of  least  squares. 

COMPUTATION   OF  TIME   SET. 

[Station,  Key  West,  Florida.     Date,  Feb.  14,  1907.     Set,  2.     Observer,  J.  S. 
Hill.     Computor,  J.  S.  Hill.] 

AT  = 

Star. Clamp. a-  t. SI. 

C. 

A. Cc. Aa. 

(«-0- 

Cc-Aa. 
V. 

s s s s s s 
I.   S  Monocer   W 

+15.00 
0.00 

+1.02 +0.26 

+0.27 

+0.02 
+  14.71 

+0.02 
2.  ̂ ' Aurigae   W 

+15.08 
+0.08 

+1.38 

-0.45 

+0.36 

-0.03 

+14-75 

—0.02 

3.   18  MoncKer   W +15.04 +0.04 
+1.01 

+0.37 

+0.26 

+0.03 
+14-75 

—0.02 

4.     6  Geminor .... W +15.03 +0.03 

+1.21 

—0.20 

+0.32 

— O.OI 

+14-72 

+0.01 
5.     f  Geminor   W 

+15.00 
0.00 +1.07 +0.07 

+0.28 

0.0c 
+14-72 

+0.01 6.  63  Aixrigae   W 
+15.02 +0.02 +1.30 

-0.34 

+0.34 

—0.02 

+14.70 
+0.03 

7.      I  Geminor   E +14.43 

-0.57 -I-I3 
—0.07 -0.30 

0.00 

+14-73 

0.00 

8.     0  Can.  Min   E +14-45 

-0.55 

—  1.02 

+0.28 

-0.27 

+0.01 

+14-71 

+0,02 

9.     a  Can.  Min.. . . E +14.45 

-0.55 

—  1. 01 

+0.33 

—0.26 

+0.01 

+14.70 
+0.03 

10.    jS  Geminor   E 
+14.41 

-0.59 -1. 13 
-0.08 

—0.30 

0.00 +14.71 

+0.02 

II.    ir  Geminor   E +14.42 

-0.58 
—  1. 21 

—0.19 -0.32 
—O.OI 

+14.75 

—0.02 

12.    <t>  Geminor   E +14-47 

-0.53 

-1. 12 

—0.05 

—0.29 

0.00 
+14.76 

-0.03 

Mean  Ar  =  +  14.727 

I.  3.00  5/4-3. ioc  +  o.7oajf7  — 0.04  =  0 

2.   3.00  a/  +  3. 89c  — 0.990JP— 0.13  =  0 

5.   2.12  «  +  2. 75  c  — 0.700,^  —  0.09  =  0 (2)  X  0.707 

6.   5.12  U  +  S-^Sc                     —0.13  =  0 
(I)  +  (5) 

9.   4.71  5/  +  S. 38c                      —0.12  =  0 (6)  X  0.920                         5 

10.  9.53*'                                     +2.61  =  0 (8)  +  (9)        II.   «=  -  0.274  from  (10! 

AT  =  -\- 

5 

-15.00-0.274  =  +14.726 

3.  3.00  «- 3- IS  <;  + 0.56  aj.+ 1.63  =  0 

4.  3.C30  «- 3-47  c- 0.34  aj;+ 1.74  =  0 

7.    1.82  5<  — 1.91  c  +  0.340^ +0.99  =  0 (3)  X  0.607 
8.   4.82  «/-S. 38  c                     +2.73  =  0 (4)  +  (7)                             .5 

12.    —1.32  -5.38  c                     +2.73  =  0 from  (8)         13.     c  =  +  0.262  from  (12) 

14.    —0.82  +1.02  —0.99  fljp    —0.13  =  0 15.   aifr=  +0.071 

16.    —0.82-0.83+0.560^     +1.63  =  0 17.  "B  =  +0.036 

The  serip,l  numbers  in  the  lower  part  of  the  table  show  the 
order  of  the  different  steps  of  the  computation.     Equation  i  is 
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obtained  by  taking  the  terms  corresponding  to  the  three  southern- 
most stars  (that  is,  Nos.  i,  3,  and  5),  substituting  the  sums  of 

tfiese  numbers  in  the  equation  AT  -\-  Cc  -t  Aa  —  {a  —  ti)  =0, 
and  treating  this  result  as  though  it  were  the  equation  for  a  single 
star.  Equations  2,  3,  and  4  are  found  in  a  similar  maimer.  This 

gives  four  equations  for  the  twelve  stars,  two  for  each  half-set. 
Since  there  are  now  as  many  equations  as  there  are  unknowns, 
the  quantities  c,  aw,  ag,  and  AT  may  be  found  by  solving  these 

equations  simultaneously.  Notice  that  in  this  solution  15*  has 
been  dropped  from  AT,  and  that  5^  is  the  small  correction  which 

must  be  added  to  15*  to  obtain  AT. 
The  following  method  of  deriving  the  constants  and  the 

chronometer  correction  without  employing  least  squares  is 
applicable  when  the  two  groups  of  stars  have  A  factors  which  are 

not  so  nearly  balanced,  or  where  the  list  of  observed  stars  con- 
sists of  one  slowly-moving  (azimuth)  star  and  several  time  stars 

in  each  half-set.  This  method  gives,  by  a  series  of  approxima- 
tions, very  nearly  the  same  result  that  would  be  obtained  by  the 

method  of  least  squares.  The  various  steps  in  the  computation 
are  shown  in  tabular  form  in  Fig.  48. 

The  formulas  on  which  the  method  is  based  are  as  follows: 

For  each  star  we  may  write  an  equation  of  the  form  • 

a  -  h  =  AT  -\-  Aa  -{■  Cc.  [28] 

Then  for  the  east  and  west  groups  we  have 

{a  —  h)w  =  AT  -f  Awaw  +  Cwc, )  /  ̂ 

{a  -  IOe  =  at  +  AwaE  +  Cec.  )  ^^^ 
Assuming  at  first  that  a£  and  a^y  are  equal,  we  find  an  approxi- 

mate value  of  c  by  subtracting  the  second  equation  from  the 
first.     Solving  for  c,  we  find 

(.  ̂   («  —  ti)w  —  (a  —  t^E 
Cfy  —  Ce 

In  the  above  example, 

_  19.25  -  1Q.17 c   ■    =  -f-0.03. 1.42  -\- 1.34 
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Using  this  approximate  value  of  c,  the  last  terms  in  Equations  (a) 

are  computed  and  subtracted  from  (a  —  ti)  in  each  case,  leaving 
the  equations  in  the  form 

{a  —  h  —  Cc)  =  A2'  +  Awdw 

Taking  each  half-set  separately,  and  also  grouping  the  azimuth 
star  and  the  time  stars  separately,  we  have  for  the  next  group 

(a  —  h  —  Cc)  =  AT  +  (Awciw)  az,     )  .,. 
(a  —  /i  —  Cc)  =  AT  +  {Awaw)  time,  \ 

and  a  similar  pair  of  equations  for  the  second  position  of  the  axis. 
From  Equa.  {h)  we  derive 

{a  —  h  —  Ccjaz.  —   (ft  —  ̂1   —  C^time 

^^  A     -A,   ■"■az.         -^^  time 

In  the  example, 

_  19.98  -  19.21  _ as  =   ;;   =  —0.70 —  0.96  —  0.03 

J  20.74  ~  19.21  , 
and  aw  =  —      —  =  —0.70. -2.05+0.03 

Employing  these  approximate  values  of  as  and  aw,  the  A  a  cor- 
rections are  computed  and  subtracted,  giving  the  value  in  the 

column  headed  a  —  h  —  Cc  —  Aa.  For  the  time  stars  these 

values  are  19.23  and  19.19.  Since  these  values  do  not  agree  for 

the  two  positions  of  the  instrument,  the  value  of  c  is  evidently  in 

error.  A  second  approximation  must  be  made  by  treating  the 

difference  of  these  numbers  (0.04)  as  an  error  in  c  and  obtaining 

a  correction  to  c  by  the  same  process  that  was  used  in  finding  c  in 

the  first  instance,  that  is, 

Correction  to  c  =  -^ —   ^— ̂   =  —0.014. 1.42  -\- 1.34 

Hence  c  =  +0.03  —  0.014  =  -fo.oi6. 

With  this  improved  value  of  c  new  values  of  ag  and  aw  are  com- 

puted as  before.  The  second  values  are  aE  =  —0.768  and  aw  = 
—0.772.  Using  these  values,  the  chronometer  corrections  are 
found  to  agree,  and  hence  no  further  approximation  is  necessary. 
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The  azimuth  and  collimation  corrections  are  now  found  for  each 

star,  as  shown  in  the  upper  part  of  the  table.  The  mean  of  the 

AT's  for  all  the  stars  is  the  chronometer  correction  for  the  mean 

of  the  observed  times.  The  residuals  (v)  are  computed  by  sub- 

tracting Ar  for  each' star  from  the  mean  of  the  AT's  for  that 
group.     These  should  add  up  nearly  to  zero. 

Whenever  the  most  accurate  results  are  desired,  the  computa- 
tion may  be  made  by  the  method  of  least  squares.  For  the 

details  of  this  method  see  Coast  and  Geodetic  Survey  Special 
Publication  No.  14,  p.  41. 

71.  Accuracy  of  Results. 

The  error  in  the  computed  value  of  AT"  due  to  accidental  errors 
alone  may  be  kept  within  a  few  hundredths  of  a  second.  Ob- 

servations made  by  the  key  method  may  be  subject  to  a  large 

constant  error,  the  observer's  personal  equation,  which  may  be 
several  times  as  large  as  the  accidental  error.  Observations 
made  with  the  transit  micrometer  are  nearly  free  from  personal 
errors. 

72.  Determination  of  Differences  in  Longitude. 
The  determination  of  the  difference  in  longitude  of  two  stations 

consists  in  measuring  the  difference  between  the  sidereal  times 
at  the  two  places.  The  method  almost  exclusively  used  for 
accurate  longitudes  in  places  where  a  telegraph  line  is  available 
is  that  in  which  the  times  are  compared  by  electric  signals  sent 
over  the  telegraph  line.  Wireless  apparatus  may  be  used  for 
this  purpose,  but  it  has  not  as  yet  come  into  general  use,  probably 
because  it  is  not  as  economical  as  the  ordinary  lines.  The 
method  used  at  present  by  the  Coast  Survey  differs  considerably 
from  the  old  method,  owing  to  the  introduction  of  the  transit 
micrometer. 

According  to  the  usual  program  each  observer,  provided  with 
transit,  chronometer,  and  chronograph,  determines  the  local 
sidereal  time  by  the  method  previously  described;  then  the  two 
chronometers  are  compared  by  means  of  arbitrary  signals,  which 
are  sent  over  the  telegraph  line  and  recorded  simultaneously  on 
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both  chronographs;  and,  finally,  each  observer  again  determines 
the  local  sidereal  time. 

According  to  the  Coast  Survey  instructions  {Spec.  Pub.  No.  14) 

each  half -set  should  consist  of  from  5  to  7  stars  (preferably  6), 
all  of  these  to  be  time  stars  (no  azimuth  star).  The  algebraic 

sum  of  the  azimuth  factors  (A)  should  be  less  than  unity.  Four 

half-sets  are  observed  during  an  evening,  and  the  telescope  axis 

is  reversed  before  each  half-set.  The  observers  do  not  exchange 
places  during  the  occupancy  of  the  station,  as  was  formerly  the 

practice.  Observations  on  three  or  four  nights  usually  give  the 

desired  accuracy. 

Fig.  49  shows  the  switchboard  and  the  arrangement  of  the 

electric  circuits  required  in  longitude  observations.  When  the 

observer  is  making  observations  for  time,  the  circuit  is  arranged 

as  shown  in  Fig.  42. 

Fig.  50  shows  the  circuit  as  arranged  during  the  exchange  of 

arbitrary  signals.  These  signals  are  made  by  tapping  the  signal 

key  in  the  main-line  circuit.  Half  of  these  signals  are  sent  by 
the  eastern  observer,  half  by  the  western,  in  order  to  ehminate 

the  error  due  to  the  time  of  transmission  of  the  signal.  The 

chronometers  mark  the  record  sheets  while  the  signals  are  being 

sent,  so  that  the  time  of  each  signal  may  be  read  from  each 

chronograph  sheet.  The  difference  in  longitude  is  found  from 
interpolated  chronometer  corrections. 

73.   Observations  by  Key  Method. 

If  the  transit  micronometer  is  not  used,  the  selection  of  stars 
must  be  modified  so  as  to  allow  more  time  between  observations. 

Since  the  observations  will  be  subject  to  the  personal  errors  of 

both  observers,  it  is  important  that  the  observers  should  exchange 

places  at  the  middle  of  the  series,  so  that  their  relative  personal 

equation  will  enter  the  latter  half  of  the  observations  with  its 

algebraic  sign  changed.  The  arrangement  of  the  circuits  is 

shown  in  Fig.  51,  in  which  an  observing  key  replaces  the  relay  and 
circuit  of  the  transit  micrometer. 
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74.  Correction  for  Variation  of  the  Pole. 

The  periodic  variation  of  the  position  of  the  pole  affects  all 

observations  for  longitude  and  must  be  allowed  for  by  applying 

the  corrections  given  in  tables  pubHshed  annually  by  the  Inter- 
national Geodetic  Association.     (See  Art.  81,  p.  106.) 

75.  Determination  of  Latitude. 

The  method  which  has  been  chiefly  used  in  this  country  for 

determining  astronomical  latitudes  for  geodetic  purposes  is  that 

known  as  Talcott's  (or  the  Harrebow-Talcott)  Method.  The 
instrument  employed  is  the  zenith  telescope,  illustrated  in  Fig.  52. 

The  principle  involved  is  that  of  measuring,  not  the  absolute 
zenith  distances  of  stars,  as  is  done  with  the  meridian  circle, 

but  the  small  difference  between  the  zenith  distances  of  two  stars 

which  are  on  opposite  sides  of  the  zenith.  By  a  proper  selection 

of  stars  this  difference  in  zenith  distance  may  be  made  so  small 

that  the  whole  angular  distance  to  be  measured  comes  within 

the  range  of  the  eye-piece  micrometer,  which  for  most  instru- 
ments is  about  half  a  degree.  A  sensitive  spirit  level  attached 

to  the  telescope  serves  to  measure  any  slight  change  in  the  in- 
clination of  the  vertical  axis  of  the  instrument  between  the  two 

observations  on  a  pair  of  stars.  The  accuracy  of  the  results 

obtained  by  this  method  is  superior  to  that  of  every  other  field 

method,  and  compares  favorably  with  the  results  obtained  with 

the  largest  instruments. 

The  horizontal  axis  of  the  telescope  is  very  short  as  compared 
with  that  of  the  transit  instrument;  small  errors  in  the  inclination 

of  the  axis,  however,  have  very  little  effect  upon  the  results;  a 

close  adjustment  is  therefore  unnecessary.  Since  the  instrument 

is  used  in  the  plane  of  the  meridian  and  must  be  quickly  turned 

from  the  north  side  to  the  south,  or  vice  versa,  the  horizontal 

circle  is  provided  with  stops  which  are  adjustable,  so  that  the 

telescope  may  be  quickly  changed  from  one  side  of  the  zenith  to 

the  other.  The  micrometer,  placed  in  the  focal  plane  of  the  eye- 

piece, is  set  so  as  to  permit  of  measuring  small  angles  in  the  verti- 
cal plane.     The  head  of  the  screw  is  graduated  to  read  to  about 
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Fig.  52.     Zenith  Telescope. 
(Coast  and  Geodetic  Survey.) 
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o".5  directly  and  to  o".o5  by  estimation.     The  spirit  level  has  an 

angular  value  of  one  (2""")  division  equal  to  about  i".5. 
76.  Adjustments  of  the  Zenith  Telescope. 
When  the  instrument  is  in  perfect  adjustment,  the  plate  levels 

should  be  central  in  all  azimuths  as  the  telescope  is  turned 

about  the  vertical  axis.  The  levehng  may  be  perfected  by  use 
of  the  more  sensitive  latitude  level.  The  horizontal  axis  must 

be  at  right  angles  to  the  vertical  axis.  The  movable  micrometer 

threads  must  be  truly  horizontal.  They  may  be  adjusted  by  a 

method  similar  to  that  used  in  adjusting  the  engineer's  level  — 
by  swinging  the  telescope  horizontally  through  a  small  angle  and 

observing  whether  the  thread  remains  on  a  fixed  point.  The 

collimation  adjustment  should  be  made  in  the  same  manner  as  in 

a  transit,  but  is  not  of  so  great  importance.  Allowance  must  be 

made  for  the  eccentricity  of  the  telescope  when  making  the  colli- 
mation adjustment.  The  value  of  one  turn  of  the  micrometer 

may  be  determined  approximately  by  observations  upon  a  close 

circumpolar  star  near  its  elongation.  The  most  satisfactory  way, 
however,  is  to  derive  the  value  of  one  turn  from  the  latitude 

observations  themselves,  by  the  method  of  least  squares.  The 

value  of  one  division  of  the  latitude  level  may  be  determined  by 

means  of  a  level  trier,  or  it  may  be  found  by  varying  the  inchna- 

tion  of  the  telescope  and  employing  the  eye-piece  micrometer  to 
determine  the  amount  of  this  incUnation  by  observations  on  a 
terrestrial  mark. 

When  in  use  the  instrument  is  mounted  on  a  wooden  or  con- 

crete pier.  It  is  usually  protected  by  a  tent  or  other  temporary 
shelter. 

In  order  to  make  the  observations,  it  is  necessary  to  have  a 
chronometer  regulated  to  local  sidereal  time  with  an  error  not 
exceeding  one  second  of  time. 

77.  Selecting  Stars. 

The  Hst  of  stars  in  the  American  Ephemeris  will  not  ordinarily 

be  sufficient  for  latitude  observations,  on  account  of  the  exacting 

Qature  of  the  conditions.     It  will  be  necessary  to  consult  such 
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star  catalogues  as  Boss's  Preliminary  General  Catalogue  of  6188 
stars  for  the  Epoch  igoo,  or  one  of  the  Greenwich  catalogues.  In 
order  to  keep  the  zenith  distances  within  the  required  Umits,  it 
will  often  be  necessary  to  observe  on  stars  which  are  much  fainter 
than  those  used  for  time  observations.  The  pairs  of  stars  selected 

should,  if  possible,  differ  by  less  than  20"*  in  their  right  ascension 

and  by  less  than  20'  in  their  declinations.  The  actual  zenith 
distance  of  a  star  should  not  exceed  45°.  Following  is  a  speci- 

men star  list  for  zenith  telescope  observations. 

OBSERVING  LIST   (FORM   i). 

[St.   Anne,  111.,  June   25,   1908.     Zenith  telescope  No.   4. 
«/.  =  4i°oi'.3. 
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*  a  =  number  of  turns  of  the  micrometer  screw  in  one  minute  of  arc  =  1.34.    The  value  of 

one  turn  of  the  micrometer  screw  =  44".65o. 

78.  Making  the  Observations. 
In  observing  on  a  pair  the  finder  circle  is  set  for  the  mean  of  the 

two  zenith  distances,  and  the  level  is  brought  nearly  to  the  center 
of  the  tube.  If  the  northerly  star  of  the  pair  culminates  first, 
the  telescope  is  set  on  the  north  side  of  the  meridian  by  means 
of  the  azimuth  stop.  When  the  star  enters  the  field,  the  observer 
bisects  it  with  the  micrometer  line.  If  a  pair  of  lines  is  used,  the 
star  is  centered  in  the  space  between  the  two.  When  the  star  is 

on  the  meridian,  as  shown  by  the  chronometer  reading,  the  bi- 
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section  of  the  star  is  perfected;  the  latitude  level  is  read  im- 
mediately, and  then  the  scale  of  the  micrometer  screw.  As  soon 

as  these  readings  are  recorded,  the  telescope  is  turned  to  the  south 

side  of  the  meridian  and  the  bubble  is  brought  to  the  center,  if 

necessary,  by  moving  the  whole  telescope.  In  leveling  the 

bubble  the  tangent  screw  of  the  setting  circle  must  not  be  dis- 
turbed in  any  case,  because  the  accuracy  of  the  method  depends 

upon  preserving  a  fixed  relation  between  the  direction  of  the 
zero  micrometer  reading  and  the  axis  of  the  latitude  level.  The 

slightest  change  in  the  angle  between  these  two  during  the  ob- 
servations on  a  pair  will  render  the  observations  worthless. 

When  the  southern  star  appears  in  the  field  the  pointing  and  the 

readings  are  made  exactly  as  for  the  northern  star. 

79.  Formula  for  the  Latitude. 

The  principle  involved  in  this  method  may  be  seen  in  Fig.  53. 

The  latitude,  EZ,  as  derived  from  the  southern  star,  is 

EZ  =  ES,  +  S,Z, 

or  <^  =  5,  -1-  f„ 

and  from  the  northern  star  it  is 

EZ    =    ESn    —    ZSny 
or 

<{>    =    8n    —    Tn- 

Fig.  53. 

The  mean  of  the  two  values  of  (^  is 

,           8a  +  8n     .     r«   ~   Tn 
<f)   =   j   

[29] 



Io6  ASTRONOMICAL   OBSERVATIONS 

If  we  let 

Ua  and  ̂ 8  =  the  level  readings  for  the  southerly  star, 

Tin  and  Sn  =  the  level  readings  for  the  northerly  star, 

d  =  the  angular  value  of  one  division  of  the  level, 

r»  and  rn  =  the  refraction  corrections, 

Ms  and  Af  „  =  the  micrometer  readings, 

and         R  =  the  value  of  one  turn  of  the  micrometer,  then  the 
latitude  is  determined  by  the  equation 

2  2  4 

+  -(/-.  -^n).  [30] 
2 

This  formula  applies  when  the  zero  of  the  level  scale  is  in  the 

center  of  the  tube.  If  the  zero  is  at  the  eye-piece  end  of  the 
tube,  the  level  correction  is 

+  -  { (wj  -  n„)  +  (ss  -  Sn)}.     ' 4 

If  for  any  reason  the  observations  are  not  made  when  the  star  is 

exactly  on  the  meridian,  another  term  must  be  added  to  the  above 

formula ;  this  will  be  of  the  form  -f- 1  {mg  +  Mn)  when  w.  and  w„ 
are  the  reductions  of  the  measured  zenith  distances  to  the  true 

zenith  distances.     (See  Special  Publication  No.  14,  p.  119.)     For 

the  application  of  least  squares  to  the  computation  of  latitude  see 

Chauvenet,  Spherical  and  Practical  Astronomy ;  Hayford,  Geodetic 

Astronomy ;  and  Coast  and  Geodetic  Survey  Special  Publication 
No.  14. 

80.  Calculation  of  the  Declinations. 

When  the  stars  selected  are  not  found  in  the  Ephemeris,  it 

will  be  necessary  to  calculate  the  apparent  declinations  for  the 

date  of  the  observation.  Formulae  and  tables  for  making  these 

reductions  will  be  found  in  Part  II  of  the  Ephemeris.  See  also 

Coast  and  Geodetic  Survey  Special  Publication  No.  14,  p.  116. 
81.  Correction  for  Variation  of  the  Pole. 

The  observed  latitude  may  be  in  error  by  several  tenths  of  a 

second,  owing  to  the  fact  that  the  observed  value  necessarily 
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refers  to  the  position  of  the  pole  at  the  date  of  the  observation, 
whereas  the  fixed  value  of  the  latitude  of  a  place  is  that  referred 
to  the  mean  position  of  the  pole.  Fig.  54  shows  the  plotted 
positions  of  the  pole  for  every  o.i  year  during  the  period  1900.0 
to  1906.0  (Jordan).     The  coordinates  of  the  instantaneous  pole 

JO.30 

SCALE  OF   FEET 

0  10  20  30 

Fig.  54.     Motion  of  the  North  Pole,  1900  to  1906. 

and  data  for  correcting  observed  values  are  published  annually 
by  the  International  Geodetic  Association,  and  observations  may 
be  referred  to  the  mean  pole  by  employing  these  tables. 

82.  Reduction  of  the  Latitude  to  Sea-Level. 

In  order  that  all  latitudes  may  refer  to  the  same  level  surface, 

they  are  all  reduced  to  their  values  at  sea-level.     If  we  suppose  a 
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lake  surface,  in  the  northern  hemisphere,  to  be  at  a  great  height 

above  sea-level,  then  it  may  be  shown  that  the  northern  end  of 
this  lake  surface  is  actually  nearer  to  the  surface  of  the  sea  than 

is  the  southern  end  of  the  lake  surface.  If  we  imagine  a  series 

of  such  surfaces  at  varying  heights  above  sea-level,  it  is  obvious 
that  the  vertical  is  a  curved  line,  since  it  must  at  every  point  be 

normal  to  the  level  surface  passing  through  that  point.  Evi- 

dently this  curved  line  is  concave  toward  the  earth's  rotation 
axis.  To  correct  an  observed  latitude  at  elevation  h  to  the  cor- 

responding latitude  at  sea-level,  it  is  necessary  to  apply  the 
correction 

A0  =  —0^.052  h  sin  2  0, 

[31: where  h  is  in  thousands  of  feet 

formula  becomes 
If  h  is  expressed  in  meters,  the 

A^  =  —  0.00017 1 /f  sin  2  0.  [32] 

(See  Art.  170,  p.  256.)  Values  of  this  correction  will  be  found  in 

Table  VII.  Below  is  an  example  of  the  form  of  record  and  com- 
putation of  latitude  from  Special  Publication  No.  14.) 

RECORD  OF  LATITUDE  OBSERVATION. 

[Station,  St.  Anne.     Date,  June  25,  1908.     Chronometer,  2637. 
W.  Bowie.] 

Observer, 

No.  of 

pair. 

star 
number 
Boss 

cat. 

Nor 

S. 

Micrometer. Level. 

Chro- 

nom- 

eter 

time  of 

culmi- 
nation. 

Chro- 

nometer 
time  of 

observa- tion. 

Meri- 
dian 

dis- 

tance. 

Re- 

marks. 

Turns. 
Div's. 

North. South. 

II 

4623 

4651 

'n 

s 

24 

16 

88.2 

66.0 

9.2 

71 .6 
42.2 

103.2 
42.6 

103.8 

8.7 

71  .0 

* 18   13   18 
18   18  39 

* +i6t 

*  These  columns  used  only  when  star  is  observed  of?  the  meridian. 
t  This  is  the  continuous  sum,  up  to  this  pair,  of  the  south  minus  the  north  micrometer  turns. 



ACCURACY   OF  THE   OBSERVED   LATITUDE 

LATITUDE  COMPUTATION 

109 

Date. 

Catalogue. Micrometer. •     Level. 

Merid- ian dis- 
tance. Star. 

No. 
Nor 
S. 

Reading. Diflf.  Z.  D. N. S. Diff. 

Declination. 

1908. 
June  25 4623 

4651 

N 

S 

24  88.2 

16  66. c 

t.        d. 
—8  22.2 

09.2 

71.6 
42.2 

103.2 
42.6 

103.8 

08.7 

71.0 

d. 

-1.05 

S. 

64   21    59.53 

17   46  48.62 

Sum  and  half 
sum. 

Corrections. 

Latitude. Remarks. 

Micrometer. Level. 
Refrac- tion. 

Meridian. 

82  08  48.15 

41   04   24.08 

/        // 

[-3  03-56 

-0.39 
—0.06 // oil) 

41    01    20.07 

Value  of  one  division  of  latitude  level:  Upper  — i".6oo 
Lower  —1.364 

Mean  —1.482 

Value  of  one  turn  of  micrometer  =  44". 650 

83.  Accuracy  of  the  Observed  Latitude. 

The  latitude  may  be  determined  by  this  method  with  a  prob- 

able error  of  from  o'^3  to  o" .^  from  one  pair  of  stars.  The  final 
value  for  the  latitude  of  the  station  determined  from  as  many 

pairs  of  stars  as  can  be  observed  on  one  night  may  be  found  with 

an  error  of  from  o".o5  to  o''.io  (or  5  to  10  feet).  It  is  not  consid- 
ered advisable  to  observe  the  same  pair  of  stars  on  several 

nights,  as  was  formerly  the  practice,  owing  to  the  comparatively 

large  errors  in  the  declinations  themselves.  The  present  practice 

is  to  observe  each  pair  but  once  and  to  observe  such  a  number 

of  pairs  that  the  uncertainty  of  the  final  latitude  is  not  greater 

than  o".io. 
In  ̂ aew  of  the  fact  that  nearly  every  latitude  is  affected  by  a 

station  error  which  may  amount  to  several  seconds,  and  that  the 

real  object  of  the  observation  is  to  determine  this  station  error, 

it  is  better  to  determine  a  large  number  of  latitudes  with  the 

degree  of  accuracy  above  mentioned  than  to  attempt  to  diminish 
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the  error  of  observation  and  occupy  but  a  small  number  of 
stations.  This  results  in  t^e  practice  of  occupying  stations  but 
one  night,  unless  for  some  reason  it  is  apparent  that  the  required 
accuracy  will  not  be  reached  without  additional  observations. 

84.  Determination  of  Azimuth. 

When  determining  an  azimuth  for  the  purpose  of  orienting  a 
triangulation  system,  the  observer  usually  has  a  choice  of  several 

jmethods,  all  of  them  capable  of  yielding  the  required  accuracy, 
for  example,  (i)  measuring  the  angles  between  a  circumpolar 

^tar  and  the  triangulation  Hnes  by  means  of  the  direction  in- 
Hrument,  (2)  measuring  from  a  triangulation  station  to  a  cir- 

cumpolar star  with  the  repeating  instrument,  or  (3)  measuring 
jFrom  a  circumpolar  star  to  an  azimuth  mark  with  the  micrometer 
bf  a  transit  instrument.  In  all  determinations  of  azimuth  it  is 

necessary  to  know  the  local  time  in  order  to  compute  the  azimuth 
of  the  star.  This  must  be  found  by  special  observations,  unless, 
as  is  often  the  case,  the  longitude  is  being  determined  at  the  same 
time  and  the  chronometer  correction  is  already  known.  For  the 
purpose  of  orienting  the  primary  triangulation  it  is  necessary  to 

determine  the  azimuth  with  an  error  not  exceeding  o".5o.  At 
Laplace  stations  (coincident  triangulation,  longitude,  and  azi- 

muth stations),  where  the  accumulated  twist  of  the  chain  of  tri- 
angles is  to  be  determined,  it  is  desirable  to  determine  the  azi- 

muth within  o".30  or  less.  It  is  also  desirable  that  the  instru- 
ment station  and  the  azimuth  mark  should  both  be  triangulation 

stations.  When  horizontal  angles  are  being  measured  at  night, 
the  azimuth  observation  is  made  a  part  of  the  same  program  by 
including  pointings  on  a  circumpolar  star  with  the  regular  series 
of  pointings  on  hghts  at  the  triangulation  stations.  An  azimuth 
found  by  this  method  is  more  accurate  than  one  determined  by 
means  of  an  auxiliary  point  and  subsequently  connected  with 
the  triangulation  by  means  of  a  horizontal  angle  measured  by 
daylight. 

On  account  of  the  slow  apparent  motions  of  stars  near  the  pole, 

nearly  all  accurate  azimuth  observations  are  made  on  close  cir- 
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cumpolars,  since  errors  of  the  latitude  and  the  time  have  less 

effect  on  the  result  than  for  stars  farther  from  the  pole.  The 

stars  ordinarily  used  for  azimuth  observations  are  shown  in 
Fig-  55- 

XVIII 

*   m  Cephei 

XII'' 

Fig.  55-     Circu
mpola

r  
Stars. 

8$.  Formula  for  Azimuth. 

In  general  all  these  methods  consist  in  calculating  the  azimuth 

of  the  star  at  the  instant  of  observation  and  combining  this 
azimuth  with  the  measured  horizontal  angle  from  the  star  to  the 

station.  The  azimuth  of  a  circumpolar  star  is  found  by  the 
formula 

tanZ  =   ■   :   ,  [22] 
cos  </>  tan  5  —  sm  0  cos  t 

where  Z  is  the  azimuth  measured  from  the  north  toward  the  east, 

and  /  is  the  hour  angle. 

If  Equa.  [33]  be  divided  by  cos  <^  tan  8,  then 

cot  8  sec  <t>  sin  / 
tanZ  =  — I  —  cot  5  tan  4>  cos  / 

=  —  cot  5  sec  </)  sin  /  (   )• Vi  —  a/ [34] 
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If  values  of   are  tabulated,*  this  formula  will  be  found  more I  —  a 

convenient  than  Equa.  [33]. 
86.  Curvature  Correction. 

In  computing  the  azimuth  of  the  star  it  would  evidently  be 

inconvenient  to  apply  the  formula  to  each  separate  pointing  on 

the  star,  on  account  of  the  large  amount  of  computation.  It  is 

simpler  and  sufficiently  accurate  to  calculate  the  azimuth  of  the 

star  at  the  mean  of  the  observed  times  of  pointing,  and  then  to 

correct  the  computed  azimuth  for  the  small  difference  between 
this  azimuth  and  the  mean  of  all  the  azimuths.  The  correction 

for  this  difference  is 

2  sin^  - 

I  ■-  V  2 
Curvature  Correction  =  —  tanZ-  X-:   rr>  f^cl 

in  which  n  =  the  number  of  pointings 

and  T  =  the  interval  of  time  (in  seconds)  between  the  ob- 
served time  and  the  mean. 

The  sign  of  the  correction  is  such  that  it  always  decreases  the 

angle  between  the  star  and  the  pole.     For  the  derivation  of  this 

formula  see  Hayford's  Geodetic  Astronomy,  p.  213.     The  correc- 

tion may  also  be  written  in  the  form  —tan  Z  [6.73672]  -  V  r^. 

n  ̂  

(See  Doolittle's  Practical  Astronomy,  p.  537.) 
87.  Correction  for  Diurnal  Aberration. 

On  account  of  the  motion  of  the  observer,  due  to  the  earth's 
rotation,  the  star  is  apparently  displaced  toward  the  east.  The 

correction  to  the  computed  azimuth  for  the  effect  of  this  apparent 

displacement  is  given  by  the  expression 

Corr.  for  Aberra.  =  q" .-\2  •   r— ̂ -  [^6] 
^        cosh  ^^  ̂ 

This  correction  is  always  positive  for  an  azimuth  counted  clock- 

wise. For  the  derivation  of  this  formula  see  Doolittle's  Practical 
Astronomy,  p.  530. 

*  For  a  table  of  values  of  log    see  Special  Pub.  No.  14. 
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88.  Level  Correction. 

If  the  horizontal  axis  is  not  level  when  a  pointing  is  made  on  the 
star,  the  observed  direction  must  be  corrected  by  the  following 

quantity : 

Lev.  Corr.  =  ~  [{w  -{- w')  —  (e  +  e')]  tan  h.  [37] 4 

For  proof  of  this  formula  see  pp.  55  and  87.  If  the  level  is 
graduated  from  one  end  to  the  other, 

Lev.  corr.  =  -  [(w  —  w')  -}-  {e  —  e')]  tan  h,  [38] 4 

where  w  and  e  are  read  before,  and  w'  and  e'  are  read  after,  the 
reversal  of  the  striding  level.  If  the  azimuth  mark  is  not  near 
the  horizon,  it  is  necessary  to  apply  a  similar  correction  to  the 
observed  direction  of  the  mark.  The  correction  is  to  be  added 

algebraically  to  readings  which  increase  in  a  clockwise  direction. 
89.  The  Direction  Method. 
In  observing  for  azimuth  by  this  method  the  observations  are 

carried  out  almost  exactly  as  in  measuring  the  angles  of  a  tri- 

angulation,  except  that  the  chronometer  is  read  whenever  a  point- 
ing is  made  on  the  star,  and  level  readings  to  determine  the 

incUnation  of  the  axis  are  made  just  before  or  just  after  pointing 
on  the  star.  The  altitude  of  the  star  should  be  measured  at  least 

twice  during  the  observations.  In  observing  Polaris  in  connec- 
tion with  a  number  of  triangulation  stations,  it  is  best  to  take 

the  pointing  on  the  star  last.  From  twelve  to  sixteen  sets  should 
be  made  with  the  direction  instrument,  in  order  to  secure  the 

necessary  precision. 
Following  is  an  example  of  the  form  of  record  and  computation 

of  an  azimuth  by  the  method  of  directions. 
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HORIZONTAL  DIRECTIONS 

[Station,  Sears,  Tex.  (Triangulation  Station).     Observer,  W.  Bowie.     In- 
strument, Theodolite  i68.     Date,  Dec.  22,  1908.] 

d 

1 
Objects 

observed. 
B 0 

Backward. 

^1 

S3 to 

Remarks. 

h  m " " " " 
I Morrison . . 

8  19 

D 

R 

A 
B 
C 

A 
B 
C 

0 

180 

0 

00 

35 

41 
36 

36 

32 

35 

35 

41 

34 

35 

31 

34 

37.0 

33.8 

35.4 
00.0 

I  division  of  the 

striding   level 
=  4".  194 

Buzzard.. . D 

R 

A 
B 
C 

A 
B 
C 

S3 
233 

30 

30 

43 

41 

34 
39 

34 

38 

42 

42 

33 

37 

32 
38 

39.2 36.3 

37.8 

02.4 

Allen   D 

R 

A 
B 
C 

A 
B 
c 

170 

350 

14 

14 

61 

57 

61 

SO 

63 

53 

62 

SS 

59 

49 

60 

S3 
59-2 

54-7 

57. 0 

21.6 

Polaris   D A 252 01 54 S3 W                  E 
h  m    s B 54 S3 

9-3               28.0 
I  48  35. 5 C 

51 

SI 

52.7 
27.7                 9.1 

I  SI  06.0 
18,4  —  0.5  18.9 

I  49  50.8 
R A 

B 
C 

72 

01 

09 

02 

10 

09 

01 
08 

06. S 

29.6 

24.9                 6.3 
13.0               31.7 

11.9  -135  25.4 

-  70 
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COMPUTATION  OF  AZIMUTH,   DIRECTION  METHOD. 

[Station,  Sears,  Tex.     Chronometer,  sidereal  1769.    <i>  =  32°  S3'  31' 
Instrument,  theodolite  168.     Observer,  W.  Bowie.] 

Date,  1908,  position   
Chronometer  reading   
Chronometer  correction . 

Sidereal  time   

a  of  Polaris   

t  of  Polaris  (time)   

t  of  Polaris  (arc)   
5  of  Polaris   

log  cot  S . . 

log  tan  <j> . 

log  cos  t . . 

log  a  (to  five  places)  . 

log  cot  S . 

log  sec  (f). 

log  sin  / . 
log 

log  (—tan  A)  (to  6  places)   

A  =  Azimuth  of  Polaris.from  north* 
DlfTerence  in  time  between   D 

andR   

Curvature  correction   

Altitude  of  Polaris  =  h . 

-  tan  h  =  level  factor. . . 
4 

Inclination  t   
Level  correction   

Circle  reads  on  Polaris . 

Dec.  22,  I 

I    49     SO -  4  37 

I  45  13 
I  26  41 

o  18  31 

4°  37'  si" 
88    49     27 

8.31254 

9.80517 

9.99858 8.IIS99 

8.312243 
0.074254 

8.907064 

0.005710 

7.299271 
06  50.8 

330 

37.5 

55-5 41.9 

13.6 
7°  33'  24". o 

8.31224 

9.80517 

9.99621 8. I 1362 

8.312243 
0.074254 

9. I 18948 0.005679 

7.511124 II   09.2 

3 

31  o 37.4 

53.6 41.8 

II. 8 

11°  17'  S7"-0 

8.31224 

9.80517 

9-99150 8.10891 

8.312243 
0.074254 

9.292105 
0.005618 

7.684220 

16     36.9 

33        46 

0.701 
-7.0 

-4-9 

252        
01  29.6 

Corrected  reading  on  Polaris. 
Circle  reads  on  mark   

Difference,  mark  —  Polaris   
Corrected  azimuth  of  Polaris,  from 

north  *   

Azimuth  of  Allen   

(Clockwise  from  South) 

252 

170 

01  24.7 

14  S7.0 

278        13  32.3 

o       06  50.8 

180       00  00.0 

98       06  41.5 

33        46 

0.701 

-7.2 

-5.0 

S8  II. 2 

58  06.2 
IS  S8.2 

278 

17  52.0 
o        II  09.2 

180        00  00.0 

06  42.8 

3    18 

-  4  37 

2  38  51 I  26  41 
I    12     09 

18°  02'  25" 

8.31224 

9  80517 

9-97811 
8.09552 

8.312243 
0.074254 

9.490924 
0.00S445 

33        46 
0.701 

-7.0 

-4.9 

281        
54  27.0 

281 

200 

54  22.1 

17  42.4 278 

23  20.3 

o       16  36.9 

180  00  00.0 
06  43  4 

7.882866 
)    26       15 . o 
•n    s 

I    38 

33      46 
0.701 

-1.8 

-13 

116      
45  48.6 

116      45  47.3 

35      18  45-4 

278      32  58. I 
i 

0      26  15.0 

180      00  00.0' 
06  43-1, 

To  the  mean  result  from  the  above  computation  must  be  applied  corrections  for  diurnal  aberra- 
tion and  eccentricity  (if  any)  of  Mark. 

Carry  times  and  angles  to  tenths  of  seconds  only. 
*  Minus,  if  west  of  north. 
t  The  values  shown  in  this  line  are  actually  four  times  the  inclination  of  the  horizontal  axjs 

in  terms  of  level  divisions.  1 
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90.  Method  of  Repetition. 
In  observing  by  the  repetition  method  the  program  given  on 

p.  57  is  followed,  with  the  addition  of  readings  of  the  chronom- 
eter and  the  stride  level,  taken  when  the  telescope  is  pointing  at 

the  star.  The  altitude  of  the  star  should  be  measured,  if  possible, 

but  may  be  computed  from  the  known  time  if  necessary.  The 
verniers  are  read  only  at  the  beginning  and  end  of  a  half  set,  as 
when  measuring  the  angles  of  a  triangulation. 

Following  is  an  example  of  the  form  of  record  and  computation 
of  an  azimuth  by  the  method  of  repetition. 

RECORD  —  AZIMUTH  BY  REPETITIONS. 
[Station,  Kahatchee  A.     State,  Alabama.     Date,  June  6,  1898.     Observer, 

O.  B.  P.     Instrument,  lo-inch  Gambey  No.  63.     Star,  Polaris.] 

[One  division  striding  level  =  2. "67.] 

"3 

0) 
C 
0 

Level  read- 
Circle readings. 

Objects. 
Chr.  time 
on  star. 

"o 

0 
1^ 

lU 

Pi 

ings. 

W.        E. 
Angle. 

-> ' A B d 
S 

h    m     s 
o        /          .. 

Mark   D 0 178 

03 

22.5 

20 
21.2 

Star   14  46  30 

49  08 52  51 

56  10 

D 

R 

I 

2 

3 

4 

4-5  10.7 
9-2     S-9 

9.6     5.6 
5-2  17.0 II. 3     4.0 
7-8     7.4 

Set  No.  s.. 
14  59   12 

S 
IS  01  55 R 6 

8.7     6.6 II-9     3-4 
100 lb 20 20 

20 
72  57  50.2 

14  54  17-7 
68.2  S3. 6 

+  14-6 Star   IS  04  44 

07  18 09  54 

R 

R 

I 

2 

3 

II-9     3-4 

8.5     6.8 

7-9     7-3 
II. 2     4.1 

Set  No.  6.. 14  15 

16  14 

IS  18  24 

D 4 

5 
6 

9.0  6.1 

5-9    9-6 

5-9    9-6 
9.1  6.2 Mark   D 

177 

27 

CX5 
00 

00 
72  51  46.7 

IS  II  48.2 694  53-1 +  16.3 
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COMPUTATION  —  AZIMUTH  BY  REPETITIONS 

[Kahatchee,  Ala.    <f>  =  S3°  i3'4o"-33-] 

Date,  1898,  set   
Chronometer  reading .  .  . 
Chronometer  correction. 
Sidereal  time   
a  of  Polaris   
t  of  Polaris  (time)   
/  of  Polaris  (arc) 
5  of  Polaris   

log  cot  5   
log  tan  0   
log  cos  t   

June  6  5 

14     54     17-7 

-31 

14     53     46 
I     21     20 

13     32     26 
203°  06' 34" 
88     45     46 

8.33430 

9.81629 

9.96367« 

log  a  (to  five  places) . 

log  cot  5   
log  sec  </>   
log  sin  t   

log      

8.ii426» 

8  334305 
0.077535 

9  •  S93830M 

9  994387 

June  6 

15 

IS 

I 

13 

6 

48.2 

-311 

II  17 .1 
21  20.3 

49  56.8 
207  29  12  .0 

33430 

81629 

94798W 

09857W 

334305 

077535 

6642 I in 

994584 
log  (—tan  A)  (to  6  places)   
A  =  Azimuth    of    Polaris,    from 

north  *   

8.oooo57n 

o"34'  22' 

8.o7o635n 

0°  40'  26". 8 

and 2  sin^  I 
sin  I 

Sum   
Mean. . . 

\7 

47 
5 

09 

I 26 
I 

52 

4 

54 
I7 

37 

2  sin^  5  T 
sm  I 

log  (curvature  corr.). 
Curvature  correction. 

II9-3 

52.3 

41 

6.9 

47.2 

114. o 

343-8 
57-3 
1.758 

9  758 

-0.6 

04.2 

30.2 

54.2 

26.8 

25.8 

35.8 

39 
7 

II 

38 

85 

280 

46 

1 ,670 

9-741 

-0.6 

Altitude  of  Polaris  =  h. 

level  factor . . . -  tan  A 
4 
Inclination   
Level  correction.  .  . 

Angle,  star  —  mark 

32    07 0.419 

+3-6 

-I". 5 

72     57     50.2 

0.419 

+4.1 

-i".7 

72     51     46.7 
Corrected  angle   
Corrected  azimuth  of  star  * . 

72     57    48.7 
o    34     22.2 

72     51     45-0 
O       40       26 . 2 

Azimuth  of  mark  E  of  N . 

Azimuth  of  mark   
(Clockwise  from  south) 

73  32  10.9 
180  00  00.0 

253     32     10.9 

73  32  II. 2 180  00  00.0 

253     32     II. 2 

To  the  mean  result  from  the  above  cotnputation  must  be  applied  corrections  for  diurnal  aberra- 
tion and  eccentricity  (if  any)  of  Mark.    Carry  times  and  angles  to  tenths  of  seconds  only. 

*  Minus  if  west  of  north. 
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91.  Micrometric  Method. 

In  employing  this  method  it  is  necessary  to  place  a  mark  nearly 
in  the  same  vertical  plane  with  the  star  at  the  time  of  the  obser- 

vation. For  greatest  accuracy,  as  well  as  for  convenience,  the 
star  should  be  observed  when  near  its  greatest  elongation.  Near 

culmination  the  star's  motion  will  carry  it  beyond  the  range  of 
the  micrometer  in  a  comparatively  short  time.  The  small 
difference  in  azimuth  between  the  star  and  the  mark  is  to  be 

measured  with  the  micrometer  in  the  eyepiece  of  a  transit  in- 
strument. The  instrument  is  clamped  in  azimuth,  and  the  read- 

ings are  taken  in  the  following  order:  take  five  pointings  on  the 
mark;  point  toward  the  star  and  place  the  stride  level  in  position; 

take  three  pointings  on  the  star  with  their  corresponding  chro- 
nometer times;  read  and  reverse  the  stride  level;  take  two  more 

pointings  on  the  star,  noting  the  times;  read  the  stride  level; 
reverse  the  horizontal  axis  of  the  instrument  in  the  bearings, 
point  the  telescope  at  the  star,  and  place  the  level  in  position; 
take  three  pointings  on  the  star,  with  chronometer  times;  read 
the  level  and  reverse  it;  take  two  more  pointings  on  the  star  and 
the  times;  read  the  level;  finally,  take  five  pointings  on  the  mark. 
Three  such  sets  will  be  found  to  require  from  thirty  to  fifty 

minutes'  time.  Either  the  altitude  or  the  zenith  distance  of  the 
star  should  be  read  twice  during  the  set,  in  order  that  an  altitude 
for  use  in  calculating  the  azimuth  may  be  interpolated. 

The  angle  given  by  the  micrometer  readings  is  in  the  plane  of 
the  Une  of  collimation  and  the  horizontal  axis.  To  reduce  this 

angle  to  the  horizontal  plane,  multiply  it  by  the  secant  of  the 

altitude.  Each  half-set  may  be  reduced  separately.  The  alti- 
tude for  the  middle  of  each  half  set  may  be  used  for  reducing  to 

horizontal.  The  value  of  one  turn  of  the  micrometer  screw  may 

be  found  by  observing  a  circumpolar  star  near  culmination,  or, 
better  still,  by  measuring  a  small  angle  by  means  of  a  theodolite 
and  then  measuring  this  angle  with  the  micrometer. 

Following  is  an  example  of  record  and  computation. 
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RECORD  AND  COMPUTATION  —  AZIMUTH    BY  MICROMETRIC 
METHOD 

[Station  No.  10,  Mexican  Boundary.    Date,  Oct.  13, 1892.    Observer,  J.  F.  H.  Instrument,  Fauth 
Repeating  Theodolite,  No.  725  (10  in.).     Star,  Polaris  near  eastern  elongation.) 

Cir- cle. 

Level  readings. 

W           E 

Chronom- 
eter time. 

T. 
2  sin2  i  T 

sin  i" 

Micrometer  read- 

ings— 
On  star. On  mark. 

E 

E 

W 

W 

8.0       9.9 

10.          7.3 

Am      i 

9  06  38,0 

07  32.0 

08  05.5 

09  13.0 

09  48.0 

9  12  01.8 12  24.7 

12  48.3 

13  36.3 

13  S8.1 

m    s 

358.6 3  04.6 

2  31  I 
I  23.6 

0  48.6 

1  25.2 

1  48.1 
2  II. 7 

2  59. 7 

3  21.5 

31.05 

18.59 

12.45 

3.82 

1.29 

3.96 

6.37 

9.46 
17.61 
22.14 

I8«.379 

0.388 

0.400 

0.424 

0.430 

i8<.3io 0.315 

0.31S 

0.311 
0.316 

X  =  2"  12""  W  of 
Washington 

<t>  =  31°  19'  35" I  div.  of  level 
=  3". 68 

I.  turn  of  mic. =  123".  73 

Means 

Means 

+18.0  -17.2 

+08 

9.0       9.0 
7.0      10.9 

18.4042- 18.100 

O.IOO 

0.090 

0.086 

0.080 

18.3134 

18.290 
0.275 

0.279 

0.281 

0.279 

+16.0  —19.9 

-3  9 

Mean       
I^.SS 

9  10  36.6 

12.67 

18.0912 18.2808 

f  of  star  at  middle  of  first  half  of  set  =  58°  48'.         cosec  f  =  1.1691.    cot  58°  47'  =  0.606. 
f  of  star  at  middle  of  second  half  of  set  =  58°  46'.    cosec  f  =  i .  1695. 
0  =  1"  20m  07».4. 5  =  1 44'  io".4. 

CoUimation  axis  reads  i  (18.3134  +  18.2808)  *  =  i8< .  2971 
*  In  this  instrument  increased  readings  of  the  micrometer  correspond  to  a  movement  of  the 

line  of  sight  toward  the  east  when  the  vertical  circle  is  to  the  east,  and  toward  the  west  when  the 
vertical  circle  is  to  the  west. 

Mark  east  of  collimation  axis  18.3134  —  18.2971  =    0.0163=    02".02 
Circle  E.,  star  E  of  collimation  axis  (18.4042  —  18.2971)  (1.1691)  =    o  .1252 
Circle  W.,  star  E  of  collimation  axis  (18.2971  —  18.0912)  (1.1695)  =    o  .2408 

Mean,  star  E  of  collimation  axis 
Mark  west  of  star 

Level  correction  (1.55)  (0.92)  (0.606) 

Mark  west  of  star,  corrected 

Mean  chronometer  time  of  observation  = 
Chronometer  correction 
Sidereal  time 

log  cot  S 
log  tan<<> 
log  cos  / 
logo 
log  cot  5 
log  sec0 
log  sin  t 

log   I  —  a 

log  (—tan  A) 
A 

log.  12.67 

log.  curvature  corr. 

Hour-angle,  i,  in  time "  in  arc 

=  8 . 34362 
=  9  78436 

=     8. 96108  « 

= 0  .1830 = 22 

64 

= 20 62 

=  - 

-0 

86 

= 

19 

76 

= 

21* 10™ 

^6^.6 

= 

—    2 

II 28 

.2 

= 

18 59 
08 

.4 

= I 20 

07 
.4 

17 

39 01 

.0 

264° 

45 

15 

'.0 

=  7 . 08906  n 
=  8.343618 
=  0.068431 

=  9.998177  n 

=  9.999467 

=  8 . 409693  n 

=  -Fl°28'  16". 1 =  I . 10278 

=  9.51247 

Curvature  corr. 
Diur.  Aber.  corr. 

Mean  azimuth  of  star 
Mark  west  of  star 

-0.33 

-fo.32 

=  +l°28'  16". 90 
19    .76 

Azimuth  of  mark,  E  of  N  =  -|-i°  27'  57" -M 
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92.  Reduction  to  Sea-Level. 
If  the  azimuth  mark  is  at  a  high  elevation,  the  computed 

azimuth  must  be  reduced  to  its  value  at  the  point  where  the 

vertical  through  the  mark  intersects  the  sea-level.  This  cor- 
rection in  seconds  is 

+   ;   77  •  cos^  0  sin  2  a,  Wq] 
2asmi"  '  ^^^^ 

in  which  h  is  the  elevation,  4>  is  the  latitude,  a  is  the  azimuth,  and 

e  and  a  are  for  the  Clarke  Spheroid  of  1866  (see  Art.  102, 

p.  136).     If  h  is  expressed  in  meters,  this  becomes 

+o".oooi09  h  cos^  0  sin  2  a,  [40] 

(log  of  0.000109  =  6.0392  —  10.) 

If  the  mark  is  either  northeast  or  southwest  of  the  observing 
station  the  observed  azimuth  must  be  increased  to  obtain  the 

correct  azimuth;  if  the  mark  is  northwest  or  southeast,  the  ob- 
served azimuth  must  be  decreased. 

Reduction  to  Mean  Position  of  the  Pole. 

The  observed  azimuth  must  be  reduced  to  its  value  correspond- 

ing to  the  mean  position  of  the  pole.  In  latitude  50°  (northern 
United  States)  this  correction  may  be  as  great  as  half  a  second 

(see  p.  107). 

PROBLEMS 

Problem  i.  What  should  be  the  linear  distance  between  the  vertical  threads  of 

a  transit  having  a  30-inch  focus  in  order  to  give  2*.5  intervals  of  time  between 
threads  for  an  equatorial  star  ? 

Problem  2.  The  following  readings  were  taken  to  determine  the  pivot  inequality 

of  a  transit.  Clamp  east,  level  direct,  w  =  43.5,  c  =  34.0;  level  reversed,  w  =  36.7, 

e  =  41.0.  Clamp  west,  level  direct,  w  =  39,1,  e  =  37.0;  level  reversed,  w  =  34.2, 

e  =  41.8.  The  value  of  one  division  of  the  level  is  o".75.  This  level  has  the  zeiro 
at  the  center  and  is  numbered  both  ways.     Find  the  pivot  inequality. 

If  a  star  is  observed  with  the  transit  in  the  position  clamp  east  what  is  the  level 

correction  to  the  observed  time  of  transit  if  5  =  -|-30°  and  <t)  =  -|-4o°? 

Problem  3.  If  the  collimation  axis  of  a  transit  has  a  true  bearing  of  S  0°  00'  15"  E 
what  is  the  correction  to  the  observed  time  of  transit  of  a  star  if  5  =  -f-  39°  and 

0  =  +30°? 
Problem  4.  If  a  latitude  is  found  to  be  36°  49'  50". 261  at  an  altitude  of  6250  feet 

what  will  this  latitude  be  when  reduced  to  sea-level? 
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Problem  $.  Compute  the  latitude  from  the  following  zenith  telescope  observa- 
tions. 

Star  No.  2125,  south;  chr.  time  13*  37"*;  micrometer  i6'.o63;  level,  n  83.0,  s  30.0. 
Star  No.  2141,  north;  chr.  time,  13*  43"*;  micrometer,  13^.504;  level  n  31.0,  s  83.5. 
Eyepiece  on  side  toward  micrometer  head;  level  zero  on  side  opposite  to  eyepiece. 

Declination  of  2125,  28°  34' 09".8o;  declination  of  2141,  39°  00' 08.80.  One 
division  of  latitude  level  =  i".oo.    One  turn  of  micrometer  =  z'.ssq. 



CHAPTER  V 

PROPERTIES  OF  THE   SPHEROID 

93.   Mathematical  Figure  of  the  Earth. 
In  calculating  the  positions  of  survey  points  on  the  earth,  it  is 

necessary  to  consider  these  points  as  lying  upon  some  mathe- 

matical surface,  like  the  sphere  or  the  ellipsoid,  taken  to  repre- 
sent the  figure  of  the  earth.  This  is  accomplished  by  projecting 

the  position  of  the  station  vertically  downward  onto  the  surface 

in  question.  The  actual  shape  of  the  earth's  surface  is  quite 
irregular  and,  from  the  nature  of  the  problem,  can  only  be  de- 

termined approximately.  But  even  if  it  could  be  found  exactly, 
it  would  not  be  adapted  to  the  purpose  of  computation.  For 
this  reason  it  is  necessary  to  select  some  figure,  the  use  of  which 

will  simpUfy  the  computation,  but  which  will  nowhere  depart 
from  the  true  figure  by  an  amount  sufficient  to  produce  serious 
errors  in  the  results.  The  figure  generally  adopted  is  the  ohlate 
spheroid  or  ellipsoid  of  resolution.  Such  a  figure  is  generated  by 

rotating  an  elUpse  about  its  shorter  axis.  This  surface  ap- 
proaches much  nearer  the  actual  figure  of  the  earth  than  does  the 

sphere^  but  perhaps  not  quite  so  near  as  an  ellipsoid  of  three  un- 
equal dimensions.  The  latter,  however,  would  be  an  incon- 

venient figure  to  use,  and  the  gain  in  accuracy  would  be  very 
slight. 

The  oblate  spheroid  is  an  ellipsoidal  surface  with  two  of  its 
axes  equal,  but  with  the  third  axis,  about  which  the  figure  rotates, 
shorter  than  the  other  two.  All  plane  sections  of  such  a  surface 

are  ellipses,  except  those  cut  by  planes  perpendicular  to  the  rota- 
tion axis.  Sections  through  the  rotation,  or  polar,  axis  are 

ellipses  whose  major  axes'  are  the  equatorial  diameter,  and  whose 
minor  axes  are  the  polar  diameter,  of  the  spheroid.     The  nature 
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of  this  surface  will  be  understood  best  if  we  investigate  first  the 
properties  of  the  ellipse  which  generates  the  spheroid. 

94.  Properties  of  the  Ellipse. 

In  Fig.  56,  PP'  is  the  polar  axis  of  the  spheroid,  and  EE'  is  any 
one  of  the  equatorial  diameters.  F  is  one  focus  of  the  ellipse. 
At  M,  any  point  on  the  curve,  the  line  MA  is  drawn  tangent  to 
the  ellipse;  MH  is  perpendicular  to  the  tangent,  that  is,  normal 

Fig.  56. 

to  the  curve.  MH  is  the  direction  that  the  plumb  Hne  at  M  is 

supposed  to  assume  unless  deflected  by  local  causes,  such  as 
variations  in  density.  The  distance  MH  (  =  iV),  terminating  in 
the  minor  axis,  is  called  the  normal.  MD  (  =  w)  is  the  normal 
terminating  in  the  major  axis.  The  angle  made  by  the  normal 

with  0E\  that  is,  with  the  plane  of  the  earth's  equator,  is  the 

geodetic  latitude  (0).*  The  angle  made  by  MO  with  OE'  is  the 
geocentric  latitude  (\J/). 

Another  angle  which  is  of  importance  in  the  geometry  of  the 
ellipse  is  the  eccentric  angle,  or  reduced  latitude,  6.  It  is  the  angle 
EVm,  Fig.  57,  in  which  M  is  any  point  on  the  ellipse,  MN  is 

*  The  astronomical  latitude  is  the  angle  made  by  the  actual  dh-ection  of  gravity 
(plumb  line)  with  the  plane  of  the  equator. 
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perpendicular  to  OE' ,  and  m  is  the  point  where  this  perpendicular 
cuts  the  circle  whose  center  is  O  and  radius  OE' . 

The  equation  of  the  ellipse  whose  major  and  minor  semiaxes 
are  a  and  &,  referred  to  its  own  axes  as  coordinate  axes,  is 

To  determine  the  coordinates  of  any  point  M  (Fig.  56),  in  terms 
of  the  latitude,  differentiate  this  ea  nation  and  the  result  is 

2—  _  ̂  ̂  
X         c?  dy 

(0 

Fig.  57. 

Since  the  tangent  line  to  an  ellipse  makes  an  angle  with  the  axis 

of  X  whose  tangent  is 

d^ 

dx' 

—  _4i 
dx dx 

dy 

The  eccentricity  e  is  the  distance  from  the  focus  to  the  center 

or 

tan  (90°  +  <^)  = 

tan<^  =  — 
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divided  by  a,  that  is  —7- .    From  the  triangle  OFP  it  will  be  seen OE 

c^  —  W 
that  ^  =   ; — > 

a'' 

or  —  =  I  -  c^. 

Therefore  (i)  may  be  written 

^  =  (i  -  e)  tan  0.  (2) 

From  the  equation  of  the  ellipse, 

1. 

1  —  e' (3)    I 
Squaring  (2)  and  substituting  in  the  result  the  value  of  'f'  from 

(3),  we  obtain  * 
a  cos  6  r    , 

^  =    /         ,  •  ,  [41] 

.                                      fl  (i  —  e^ )  sin  <6  r    1 
and  y  =     )       .     ̂ -  [42] Vi  —  e^  sin^  ̂  

95.  Radius  of  Curvature  of  the  Meridian. 
To  find  the  radius  of  curvature  of  the  meridian  (Rm),  apply  the 
general  formula 

[■-(in 

tVm   — 

dy 

dx^ 

dy  _ 

dx 

_x^^ 

y  (J? 

From  (i) 

*  The  relation  i  +  tan^  «^  =  sec^  <^  is  used  in  this  transformation. 
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Differentiating  this  equation,  we  have cPy 

(y-
 

-  X 

dy 

dx 

dx" 

an 
f 1 

= 
y 

ac 

Therefore       Rm=  — r     ,  x"  h'f 

[ay  +  b^x"]^ 

a^'b' 

L    I  —  e^  sin^  </)         1  —  e^  sin^</)  J 

a'^b^ Then,  since  b^  =  a^  {i  —  e^), 

^'""       (i-e^sin^^)!  ^43J 
Values  of  log  Rm  will  be  found  in  Table  X. 
96.  Radius  of  Curvature  in  the  Prime  Vertical. 
The  radius  of  curvature  of  the  surface  of  the  spheroid  in  a  plane 

at  right  angles  to  the  meridian  may  be  proved  to  be  equal  to  the 
length  of  the  normal  (N)  terminating  in  the  minor  axis.  If  a 
central  section  be  taken  through  a  point  M  and  perpendicular  to 
the  meridian,  and  the  radius  of  curvature  of  this  ellipse  at  point 

M  be  computed,  it  will  be  found  to  be  p  =  — ^^   —• cos  0  sec  \J/ 

According  to  Meunier's  theorem  the  radius  of  curvature  of  the 
normal  section  equals  the  radius  of  curvature  of  this  central 
section  divided  by  the  cosine  of  the  angle  between  the  two  planes, 

*  The  negative  sign  indicates  only  the  direction  o£  bending.  It  is  customary  to 
r^ard  the  value  of  Rm  as  positive. 
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that  is,  by  cos  (</>  —  i/').    Hence  the  radius  of  curvature  of  the 
prime  vertical  section  is  N. 

To  show  this  geometrically,  let  A  and  B  in  Fig.  58  be  two  points 

on  the  same  parallel  of  latitude.  The  normals  to  the  surface  at 

A  and  B  always  intersect  at  H  on  the  minor  axis.  Let  C  be  a 

point  on  the  prime  vertical  section  through  A,  and  also  on  the 

meridian  of  B.  The  normals  at  A  and  C  intersect  at  some  point 

K  above  H.    K  is  approximately  the  center  of  curvature  of  the 

Fig.  58. 

arc  AC.  When  the  meridian  PBC  is  taken  nearer  to  A,  points 
A  and  C  approach  each  other,  the  intersection  of  their  normals 

approaches  the  true  center  of  curvature,  and  the  length  CK 

approaches  the  true  radius  of  curvature.  But  the  nearer  C 

approaches  A,  the  nearer  it  approaches  B.  Hence  CK  must 

ultimately  coincide  with  AH;  that  is,  H  is  the  point  toward  which 

the  center  of  curvature  is  approaching  and  the  normal  N  is  the 

radius  of  curvature  of  the  prime  vertical  section  at  A . 

From  Fig.  56  it  is  evident  that 

N  = 

cos«^ 

V  I  —  e^  sin^  </> 
[44] 

Values  of  log  N  will  be  found  in  Table  X. 
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The  normal  terminating  in  the  minor  axis  is 

sm<^      Vi  —  e^sii^<l> 

The  radius  of  the  parallel  of  latitude  ( =  ic)  is  given  by 

Rp  =  N  cos  (f).  [46] 

97.  Radius  of  Curvature  of  Normal  Section  in  any  Azimuth. 

Having  found  the  radii  of  curvature  of  the  two  principal  sections, 

it  now  remains  to  find  a  general  expression  for  the  radius  of  cur- 
vature in  any  azimuth,  and  it  will  be  shown  that  this  may  be 

expressed  in  terms  of  the  two  radii  already  found. 

The  equation  of  the  spheroid  is 

02  -f-   ̂ 2   -^   p  ̂' 

or  bW  +  b^yi^  +  aW  =  a^h^.  (a) 

In  Fig.  59  the  Zi-axis  coincides  with  the  polar  axis  of  the  spheroid. 
If  M  be  any  point  on  the  meridian  ZiM,  and  MY  any  section  cut 

by  a  plane  through  MH  (the  normal)  making  an  angle  a  with  the 

meridian,  then  the  equation  of  the  spheroid  may  be  transformed 

so  as  to  refer  to  the  origin  C  and  the  new  Z  axis  CM.  Let  the 

coordinates  of  any  point  P  be  Xi,  yi,  Zx,  and  let  the  new  coordi- 
nates be  X,  y,  z.  Then,  from  Fig.  59,  the  relation  of  the  new 

coordinates  to  the  old  is  given  by 

Xi  =  OG  =  OC  -\-  X  -\-  z  cos  (i>  -\-  y  cos  a  sin  0 

=  Ne^  cos  ̂   -\-x  -]rZ  cos  (t>  -\-y  cos  a  sin  ̂ , 

yi  =  ysina, 

Zi  =  s  sin  <^  —  y  cos  a  cos  4>. 

Substituting  these  values  in  (a), 

h^  {Ne^  cos  4>  -\-  X  -\-  z  cos  </>  +  y  cos  a  sin  (ff  -\-  h^y^  sin^  a 

-f-  a^  (z  sin  ̂   —  y  cos  a  cos  0)^  =  a%^, 

which  is  the  equation  of  the  spheroid  referred  to  the  new  axes. 

If  X  is  made  equal  to  zero,  then  P  will  be  on  the  curve  MY,  and 

the  equation  becomes  the  equation  of  this  plane  section,  that  is, 
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h^  {Ne^  COS  0  +  0  COS  0  +y  cos  a.  sin  4>y  +  W'f  sin^  a 

+  a^  (2  sin  0  —  y  cos  a  cos  0)^  =  a^6^, 

the  equation  of  the  ellipse  MY. 

To  determine  the  radius  of  curvature  at  M  it  is  necessary  to 
dz dh 

find  v^  and  -7^  and  to  substitute  these  values  in  the  general dy  dy 
formula  for  radius  of  curvature. 

Expanding  the  last  equation,  collecting  terms,  and  dividing 

through  by  a^, 

f-  [i  —  e^  (i  —  cos^  a  cos^  0)]  +  2^  (i  —  e^  cos^  0) 
—  yz  (2  ̂  cos  a  sin  0  cos  0)  +  2  3;  (i  —  e^)  -N  >  e^  cos  a  sin  0  cos  0 

+  2  2e2  (i   _  e2)  .  ̂   .  cos2  0  =   (l   -  ^2)  (^2  _  ̂ g4  cos2  0), 
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or,  in  abbreviated  form, 

fA  +  z^B  -  yzC  ̂   2  yD  -\-  2  zE  =  F. 

Dififerentiating  this  equation,  y  being  taken  as  the  independent 
variable, 

2yA+2Z^B-Cy~-Cz  +  D+E^  =  o. ay  ay  ay 

Differentiating  again, 

2A+2Bi-^  -2C- ^  dh^   \dy/   d^ 
'  dy^~  ~  2Bz-Cy  +  E 

For  point  M,  y  =  o  and  z  =  n  =  N  {i  —  e^).    Therefore dz  _ dy 

N(i—  e^)  (2  e^  cos  a  sin  </>  cos  </>)  —  2  (i  —  e^)Ne^  cos  a  sin  ̂   cos  (f> 

2Bz-Cy-\-E
  ~°' 

,    ̂   _          2  [l  —  6^  (i  —  COS^  a  COS^  </))]   . 

^^     i/~  ~  2iV(i  -e2)(i  -e^cos^<i>)  +2^2(1  -e2)cos20.iV 
_        I  —  g^  +  g^  cos^  a  COS^  0 

iV  (l    -  ^2) 

_       (i  —  g^)  (sin^  a  +  cos^  g)  +  e^  cos^  a  (i  —  sin^  0) 

iV  (l   -  g2) 
_       (i  —  e^)  sin^  a  +  cos^  a  —  cos^  a  •  e^  sin^  (/>      j?^ 

iV  (i  -  e^)  ^  i?. 

Rm  sin^  a  H   ^  cos^  a  (i  —  g^  sin^  0) 

_         I  —  g^ 

_       Rm  sin^  g  +  A^  cos^  a NRm 
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Substituting  these  dififerential  coefficients  in  the  usual  formula 

for  radius  of  curvature,  we  have 

-^«  ̂   AT   2   T^ — ^1 —  t47] N  cos^  a  -\-  Km  sin^  a 

If a  =  o 

NR 
■'^a  ~        ]\f       ~        "•' 

the  radius  of  curvature  of  the  meridian;  and  if 

a  =  90°, 

then  R^  =  M^  =  N^ 
,  Rm 

the  radius  of  curvature  of  the  prime  vertical. 

Values  of  log  i?„  for  different  latitudes  and  azimuths  will  be 
found  in  Table  XI. 

98.  The  Mean  Value  of  i?„. 

The  mean  value  of  R^  at  any  point  for  all  azimuths  from  0°  to 

360°  may  be  found  as  follows:  if  the  angular  space  about  any 
point  M  be  divided  into  a  large  number  of  small  parts,  each  equal 

to  da  and  each  expressed  as  a  fraction  of  a  radian,  then  the  num- 

ber of  such  parts  in  a  radian  will  be  — ,  and  the  number  in  a  cir- 
da 

cumference  will  be  -— .     If  the  value  of  Ra  be  computed  for  each da 

of  these  azimuths,  then  the  sum  of  these  values  of  Ra,  divided 

by  their  number,  is  the  mean  value;  that  is, 

=  r^- I/O  2  TT 

mean  R^ 
Jo 

.2.  j^j^ 

=  —    r     -7Z   .  ̂'^^"L      .   .     'da 
2t  Jo 
=  7 

IT  Jo 

'0     N  cos^  a  -\-  Rm  sin^  a 
NRr. 

N  cos^  a  -\-  Rm  sin^  a 
da. 
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To  integrate  this  quantity,  substitute  a  new  variable,  /  = 

tanaV^,  from  which  dt  =  v/tt   V"-    By  dividing  both ^  N  ^  N    cos^  a 

numerator  and  denominator  by  A^  cos^  a  and  factoring  NRm  the 
integral  may  be  put  in  the  form 

Fr        t 

9  V  ~;rr  *  — t~  *  "<^ 
D         ̂  -./~D~lir    r^    N     cos'' a mean  a„  =  -  VR^N  I TT  Jo 

,   i^m  sin^  a 

iV   COS''  a which,  by  substitution,  becomes 

2    /TT^r  r°°    <// mean  R^  =  ~  Vr^N  \     - 
Jo    I TT  Jo      1   +t^ 

2 

TT 

=  -  Vr^N  [tan-i  /]o 

TT  2 

=  Vi?„iV.  [48] 

The  mean  radius  of  curvature  is,  therefore,  the  geometric  mean 
of  the  radii  of  curvature  of  the  two  principal  sections. 

99.   Geometric  Proofs. 

Geometric  proofs  of  the  last  two  formulae  will  be  found  in- 
structive. To  find  Re,  geometrically,  imagine  a  tangent  plane 

at  the  point  M  and  also  a  parallel  plane  at  an  infinitesimal  dis- 
tance below  M.  This  second  plane  will  cut  from  the  surface  a 

small  ellipse.  It  has  already  been  shown  that  the  radius  of 
curvature  of  the  prime  vertical  section  is  N.  In  Fig.  60  the 
points  A ,  M,  and  B  are  on  the  circle  whose  radius  is  N  and  whose 
center  is  the  point  H  on  the  axis.     By  similar  triangles, 

MC  :CA  ==CA  :  CK. 

Since  MC  is  infinitesimal, 

2  N 
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similarly,  for  a  section  in  the  meridian 

62
 

MC  = 
2  rJ 

and,  in  general,  for  any  section, 

MC  = 

2R. 

The  coordinates  of  the  point  F  (Fig.  61)  are 

:t;  =  5  •  sin  a        and        y  =  s  '  cos  a. 

Fig.  61. 

Substituting  these  in  the  general  equation  of  the  ellipse, 

r2  cin2  «,  c2  /--/-vcZ S'-  sm"  a    ,    S''  COS^  or 

62
 

But,  from  the  preceding  equations, 

=  I. 

hence 

1^  =  ̂        and        '^  =  ̂  

—  •  sm^ «  +  ̂   •  cos2  a  =  I, 

or 
i2„  = 

iVi?« 

iV  cos2  a  -\-  Rm  sin2  a 

[47I 
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To  show  geometrically  that  the  mean  value  of  Ra  =  y/RmN, 
observe  that,  as  before, 

I     r^'' 

mean  Ra  =  —   I      Ra'da 2  TT  Jo 

and,  from  the  preceding  paragraph, 

i?„  = 

RmS"
" 

Therefore 

But 

Therefore 

But 

Therefore 

mean  a„  =  —  I      —rz~  •  da. 2  X  Jo         0 

I  r^'" 
-  /      s"^  da  =  area  of  ellipse  =  Tab. 
2  Jo 

T  /? 

mean  Ra  =  -  XTab  X-^ 
IT  0^ 

'    ̂   aRm 
b 

b        ̂   Rm 

mean  i?„  =  VNRm. 

[48] 
100.  Length  of  an  Arc  of  the  Meridian. 

Any  small  arc  of  the  meridian  ellipse  may  be  regarded  as  an  arc 
of  a  circle  whose  radius  is  R^,  the  error  being  very  small  for  short 

arcs.    The  length,  therefore,  is 

5    =   Rmdif), 

or,  if  d<^  is  in  seconds  of  arc, 

s  =  Rmd^"  •  arc  1".  [49] 

If  the  arc  is  so  long  that  the  value  of  Rm  varies  appreciably,  it  is 

necessary  to  find  ̂   by  integrating  the  expression 

fl  (i  -  a 

ds  = 
between  the  limits  0i  and  02- 

d(i> 
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If  we  expand  the  denominator  by  the  binomial  theorem,  we 
have 

ds  =  a  {1  -  e"")  (i  +^eHm'^(f>  +  ̂ ^-e^sinU  +  Ue^in^  .  .  .  )  d<f>. 

Integrating, 

s  =  a{i  -  e^)   P(i  +  I e^ sin^ <j>  +  Y^" sin^ <!> -\-  •  -  ■  )  d<l>. J<i>i 

In  order  to  integrate  the  terms  of  the  series  in  parenthesis  we 

simpHfy  the  expression  by  means  of  the  following  relations: 

sin^  0  =  2  ~  2  cos  2  <f>, 

sin^  ̂   =  f  —  2  cos  2  <^  +  I  cos  4  </>, 

sin^  0  =  T  6  ~  if  cos  2  0  +  y\  cos  4  0  —  ̂ ^2  cos  6  </>. 

Integrating  and  substituting  the  limits,  (t>i  and  (^2,  we  have 

s  =  a(i  —  e^)  I A  (02  —  0i)  —  ̂   -B  (sin  2  02  —  sin  2  0i) 

+  I C  (sin  4  02  -  sin  4  0i)  .  .  .    } ,     [50] 

in  which  A  =  1.005 1093,  -^  =  0.0051202,     and  C  =  0.0000108. 

(See  Jordan's  Handbuch  der  Vermes sungskunde,  Vol.  Ill,  p.  226; 

and  Crandall's  Geodesy  and  Least  Squares,  p.  163.) 
loi.    Miscellaneous  Formulas. 

The  following  formulas,  relating  to  the  ellipse,  are  given  here 
for  convenience  of  reference. 

The  geocentric  latitude  may  be  found  from  the  expression 

y  b^ tan  }p  =  '^  =  {1  —  e^)  tan  0  =  —  tan  0.  [51] 

The  maximum  difference  between  0  and  ̂   is  about  0°  11'  40",  at 

latitude  45°.  At  the  equator  and  at  the  poles  the  difference  is 
zero. 

The  reduced  latitude,  6  (see  Art.  94,  p.  123),  may  be  found 
from  the  geodetic  latitude  by  means  of  the  relation 

a  tan  6  =  b  tan0  [52] 

which  is  readily  proved  from  Fig.  57. 
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The  compression  of  the  spheroid,  that  is,  the  flattening  at  the 

poles,  is  expressed  by 

/  =  "-^*-  [53I a 

The  length  of  a  quadrant  of  the  meridian  is  given  by 

Fig.  62, 

102.   Effect  of  Height  of  Station  on  Azimuth  of  Line. 

Since  the  normals  drawn  from  two  points  on  the  surface  do  not 

in  general  lie  in  the  same  plane,  there  will  be  an  error  in  the 
observed  horizontal  direction  of  a  station,  depending  upon  its 

height  above  the  surface  of  the  spheriod.  This  error  may  be 

likened  to  the  error  of  sighting  on  an  inclined  range-pole;  the 

*  From  the  equation  for  the  length  of  a  meridian  arc,  we  have  for  the  quadrant 

g  =  a  (i  —  e^)  f    ( i  +  -  t^  {i  —  cos  2  cf,)  +  ̂  e^  (s  —  4  cos  2  <t>  +  cos  4  4>))  d<j) •'o    \        4  04  / 
IT 

=  a(i  -  e^)[<t>(i  +^e^  +  P-e*)-^e^sm2(l>-^-^e*sm2<l>  +  ■^e*sm4<l>~\ 
L    \        4  64     /      8  32  256  Jo 

2  V         4  64  / 
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higher  up  the  sight  is  taken,  the  greater  the  error  in  the  horizontal 
angle.  In  Fig.  62  ̂ he  observer  is  at  A  and  sighting  at  point  M, 

which  is  at  an  elevation  h  above  sea-level.  The  vertical  plane  of 
the  instrument  projects  M  down  to  sea-level  at  B  on  the  line  MH, 
H  being  the  end  of  the  normal  at  A.    The  point  which  is  verti- 

FiG.  62a.    A  vertical  in  latitude  0°  and  a  vertical  in  latitude  60°; 
d\  —  80°;  e  =  0.81;  (looking  SW). 

cally  below  M  is  B',  as  determined  by  the  normal  MH'.  Denote 
by  5  the  angle  HMH'  or,  what  is  nearly  the  same,  HBH'.  The 
angle  {x)  subtended  by  BB'  at  point  A  (the  observer's  position) 
is  the  correction  desired.  The  latitude  of  A  is  <^,  and  that  of  M 

is  <i)'.    In  the  triangle  MHH' 
-sin  5  HE'  HH' 

or 
sin  HH'M 

d  = 

HB+BM 
  •  cos  <6  , 

HB  ^' 

HB (approx.), 

where  </>'  is  the  latitude  of  B'. 
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Now       HH'  =  0H'  -OH 

=  {N'  -  n')  sin  </>'  -  (iV  -  n)  sin  <i> 
=  N'e"  sin  4>'  -  Ne^  sin  «/,. 

Therefore         8  =  ̂ ^  (TV'e^  sin  <j>'  -  Ne"  sin  «/,) 
=  e^  cos 

0  \^]^sm</)  -  sm^j, 

N'
 

in 
 
wh
ic
h 
 

— 
 
ma
y 
 

be
  
pu
t 
 
= 
 
i  wi

th
  

sm
al
l 
 

err
or.

 

Then  5  =  e^  cos  <^'  (  2  cos  -  (t^  +  0O  sin  —  J  j 

where  A(^  =  <^'  —  ̂ ;  •  • 

Then  6  =  e^  cos^  <i>'  X  A</)  (approx.). 

=  e^  cos^  ̂ '  —  cos  a 

2       2  ̂ /  (i  -  g^  sin^  <^0^ =  e^  cos''  0    •  5  cos  a  '   ;   -f^ 
a  [1  —  e^) 

(1  -  g^sin^d)')^ The  factor  ̂ ^ — ;   „,         differs  but   little  froin  unity  and 

(i  -  e^) may  be  considered  equal  to  unity  in  this  equation. 

_,  ^      e^  'S  ' cos^  0'  •  cos  a  ,  . Then  5  =    {a\ a 

The  linear  distance  BB'  =  hb,  and  the  correction  to  the  azi- 
muth {x)  at  point  A  is  given  by 

„      hh  sin  a 

X     = 
5  arc  I 

_  he^  cos^  <i>'  sin  a  cos  a 

a  axe  1" =   77  .  g2 .  -  .  sin  2  «  .  cos2  </)',  [55] a  arc  i  2 

as  given  by  Clarke  {Geodesy,  p.  112).     This  may  be  written 

x"  =  k  'h  'Sm2  a  cos^  4/  [56] 
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where  k  =   y.^ 2  a  arc  i 

the  dimensions  being  in  meters. 

The  logarithm  of  k  is  6.03920. 

When  the  signal  is  NE  or  SW  of  the  observer  the  azimuth  must 

be  increased  to  obtain  the  correct  azimuth  at  sea-level;  if  the 
signal  is  NW  or  SE  the  observed  azimuth  must  be  decreased. 

If,  when  deriving  the  above  equation,  we  place  the  fraction 
I  —  o  sin  (b 

  ^ — •  =  I,  the  formula  for  x"  should  have  a  replaced  by  N. 

For  (i>  =  45°,  a  =  45°,  and  h  =  1000  meters,  the  value  of  x" 

is  0^.0547.  This  is  much  smaller  than  the  probable  error  of  an 
observed  direction  (see  p.  65),  and  is  therefore  negHgible  except 

for  great  heights.  This  correction  has  been  applied  to  angles 

measured  in  the  primary  triangulation  of  the  CaUfornia  and 

Texas  arc  and  the  CaHfornia  and  Washington  arc.  It  is  tdo 

small  to  affect  the  triangulation  of  the  eastern  half  of  this  country. 

Questions.  —  What  influence  does  the  height  of  the  observer  have  upon  the 
result? 

Why  does  the  distance  not  enter  into  the  formula? 
Which  one  of  the  two  approximations  is  more  accurate,  that  giving  a  in  the 

denominator,  or  that  giving  N  ? 

103.  Refraction. 

Inasmuch  as  the  refraction  acts  in  the  vertical  plane  at  any 

point,  and  the  vertical  plane  changes  its  direction  as  the  ray  pro- 
ceeds along  the  line,  it  is  evident  that  there  must  be  some  hori- 
zontal displacement  of  the  object  sighted,  due  to  the  refraction. 

Investigations  show  that  this  error  is  quite  inappreciable  for  all 
lines  that  can  actually  be  observed. 

104.  Curves  on  the  Spheroid.     The  Plane  Curves. 

When  a  theodoUte  is  set  up  at  any  point  A  and  leveled,  its 
vertical  axis  is  made  to  coincide  with  the  direction  of  the  normal 

at  A,  which,  except  for  local  deflections,  coincides  with  the  direc- 

tion of  the  force  of  gravity  at  ̂  .  If  another  theodolite  is  set  up 

at  5,  in  a  different  latitude  and  a  different  longitude,  it  is  evident 
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that  these  vertical  axes  are  not  in  the  same  plane,  since  their 

normals  (plumb  lines)  never  intersect.  The  greater  the  latitude, 

the  lower  the  point  where  the  normal  intersects  the  polar  axis. 

It  is  clear  that  the  line  marked  out  on  the  surface  of  the  spheroid 

by  the  line  (or,  rather,  plane)  of  sight  of  the  first  theodolite  is  not 

the  same  as  the  hne  marked  out  by  the  vertical  plane  of  the  other 

theodolite.  If  A  is  southwest  of  B,  then  the  curve  cut  by  the 

plane  of  the  theodolite  at  A  is  south  of  that  cut  by  the  plane  of 

sight  of  the  theodolite  at  B.  This  may  be  seen  from  the  fact 

that  both  planes  contain  the  chord  AB;  and  since  the  normal  at 

A  is  higher  at  the  polar  axis,  the  curve  itself  must  be  lower 
(farther  southj. 

105.  The  Geodetic  Line. 

Another  curve  which  holds  an  important  place  in  the  theory 

of  geodesy  is  known  as  the  geodetic  line.  This  is  the  shortest 

Hne  that  can  be  drawn  on  the  surface  of  the  spheroid  between 

two  given  points.  It  is  not  a  plane  curve,  but  has  a  double  cur- 

vature. A  characteristic  property  of  the  curve  is  that  the  oscu- 

lating plane  *  at  any  point  on  the  curve  contains  the  normal  to 
the  surface  at  that  point.  In  most  cases  the  geodetic  line  is 
found  to  lie  between  the  two  plane  curves  and  has  a  reversed 

curvature.  Fig.  63  is  a  photograph  of  a  model,  the  semi-axes  of 

which  are  a  =  6  inches  and  h  =  3.5  inches.  The  two  plane 
curves  are  shown  and  between  them,  with  the  curvature  sHghtly 

exaggerated,  is  the  geodetic  line. 

In  order  to  obtain  a  clear  conception  of  the  nature  of  the  ge- 
odetic line,  let  us  imagine  that  a  transit  instrument  is  set  at  point 

A  (Fig,  64),  leveled,  and  then  sighted  at  point  B.  Then  it  is 

moved  to  point  B,  set  up,  and  leveled  again,  and  a  back  sight  is 

taken  on  A;  point  C  is  then  fixed  by  reversing  the  telescope. 

When  the  sight  is  taken  to  A ,  the  sight  line  traces  out  the  plane 

curve  BhA ;  and  when  point  C  is  sighted,  it  traces  out  BhC.     The 

*  The  osculating  plane  may  be  considered  to  pass  through  three  consecutive 
points  of  the  curve.  In  reality  it  is  the  limiting  position  approached  by  the  plane 
as  the  distance  between  the  three  points  decreases  indefinitely. 
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Fig.  63.     Plane  Curves  and  Geodetic  Line. 

Fig.  64. 
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instrument  is  then  taken  to  C  and  the  process  repeated.  It 
should  be  observed  that  the  (vertical)  sight  plane  of  the  instru- 

ment coincides  with  the  normal  to  the  surface  at  each  station. 

If  the  points  A,  B,  C,  D  are  imagined  to  approach  nearer  and 
nearer,  so  that  AB,  BC,  etc.,  become  infinitesimal  elements  of  the 
curve,  the  plane  which  contains  three  consecutive  points  of  the 
curve  also  contains  the  normal  to  the  surface.  If  we  imagine 
the  instrument  to  move  along  this  line,  it  is  seen  that  the  vertical 
plane  of  the  instrument  twists  so  that  it  always  contains  the 
normal. 

One  of  the  characteristic  properties  of  the  geodetic  line  is 
shown  by  the  equation 

Rp  sin  a  =  k,  a,  constant  [57] 

Rp  being  the  radius  of  the  parallel  and  a  the  azimuth  of  the  ge- 
odetic line  at  any  point.  This  equation  may  be  derived  analyti- 

cally by  the  methods  of  the  calculus  of  variations  (see  Clarke, 

Geodesy,  p.  125)  or  by  geometric  construction  (see  Jordan,  Ver- 
messungskunde,  Vol.  Ill,  p.  395).  From  this  equation  it  will  be 

seen  that  when  a  is  a  maximum  (90°),  sin  a  =  i  and  Rp  =  k. 
The  constant  of  the  equation  is  therefore  the  radius  of  the  parallel 
of  latitude  beyond  which  the  geodetic  line  does  not  pass.  When 

a  is  a  minimum,  Rp  is  a  maximum,  that  is,  Rp  =  a,  the  equatorial 
radius  of  the  spheroid.  This  shows  that  in  general  a  geodetic 
line  cutting  the  equator  at  any  angle  a  may  go  northward  up  to 

some  (limiting)  parallel  of  latitude  <^°  (corresponding  to  Rp  =  k), 
but  will  not  pass  north  of  this  parallel.  In  the  southern  hemi- 

sphere it  will  reach  a  limit  (—  ̂°)  having  the  same  numerical 
value.  Such  a  geodetic  line,  when  traced  completely  around  the 
spheroid,  will  not  in  general  return  exactly  on  itself,  but  will  pass 
the  initial  point  on  the  equator  in  a  slightly  different  longitude 
and  then  proceed  to  form  another  loop  around  the  spheroid. 

Except  for  a  few  particular  cases  the  geodetic  line  lies  between 
the  two  plane  curves  and  divides  the  angle  between  them  in  the 
ratio  of  about  2  to  i,  as  shown  in  Fig.  65. 
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If  the  terminal  points  P  and  Q  are  in  nearly  the  same  latitude, 

the  geodetic  line  may  cross  the  plane  curve. 

It  is  important  to  bear  in  mind  that  the  lengths  of  these 

different  curves  on  the  spheroid  differ  by  quantities  that  are 

quite  inappreciable  in  practice.  The  differences  in  length  are  far 

shorter  than  the  distances  by  which  the  curves  are  separated  at 

their  middle  points  (Art.  107),  and  even  these  latter  are  negligible 

in  practice.  Also  the  angle  by  which  the  azimuth  of  the  geodetic 

differs  from  the  azimuth  of  the  plane  section  is  much  smaller  than 
can  be  measured. 

'^\^ 

Fig.  65. 

It  should  be  noted  that  the  geodetic  line  itself  cannot  be  sighted 

over  directly,  because  it  is  not  a  plane  curve,  and  that  the  geodetic 

triangle  can  be  obtained  only  by  computation. 
106.  The  Alignment  Curve. 

Another  curve  which  may  be  drawn  on  the  surface  is  defined 

in  the  following  manner:  if  the  theodolite  be  supposed  to  move 

from  A  to  B,  keeping  always  in  line  between  the  two  points  (that 

is,  the  azimuths  of  A  and  B  180°  apart),  and  the  instrument  being 
always  leveled,  its  path  will  be  a  curve  which  lies  very  close  to  the 

geodetic  line  and  generally  between  the  two  plane  curves.  This 
is  called  the  alignment  curve. 

It  is  possible  to  define  other  curves  *  between  these  two  points. 
*  See  Coast  Survey  Report  for  1900,  p.  369. 
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Such  curves  are  of  theoretical  value  only,  since  the  lengths  of  all 

such  lines  on  the  earth's  surface  differ  from  each  other  by  quanti- 
ties too  small  to  measure.  The  two-plane  curves,  however,  are 

separated  by  a  distance  which  is  quite  appreciable. 
107.  Distance  between  Plane  Curves. 

The  maximum  separation  of  the  two  plane  curves  may  be 

computed  approximately  as  follows:  the  angle  (5')  between  the 

.North  Diane 
curve 

South  plane 

cnive- 

Fig.  66. 

two  planes  is  very  nearly  equal  to  the  angle  8  multiplied  by  sin  a, 
since  8  is  the  angle  measured  in  the  plane  of  the  meridian,  whereas 

the  angle  desired  (5',  Fig.  66)  is  that  perpendicular  to  the  planes 
of  sight. 

Therefore  5'  = 
se^  cos^  <^  cos  a  sin  a 

N 

(see  equation  (a),  p.  138). 
The  distance  of  the  chord  AB  (Fig.  67)  below  the  surface  (D) 

at  its  middle  point  is  given  by 

D:-  =  -:2R. 

or,  approximately, 

D  = 

8N 
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The  curves  are  separated  at  their  middle  points  by  the  hori- 
zontal distance 

se^  cos^  (f)  cos  a  sin  a 
N 

r  cos^  <^  cos  a  sin  a. 

[58] 

Fig.  67. 

The  difference  in  azimuth  may  be  computed  approximately 

by  finding  the  angle  between  the  two  tangents  to  the  curve  drawn 

from  one  of  the  stations  and  prolonged  half  the  distance  (Fig.  68) . 

The  terminal  points  of  these  tangents  will  be  at  a  distance  D 

above  the  surface  and  will  be  separated  by  a  distance  2  Dh' .  The 
angle  between  these  two  lines  is  nearly 

2Dh' \  s  arc  i" 2  sr    e^  cos^  <i>  cos  a  sm  a 

s^      e^  cos^  <t>  cos  a  sin  a 

2  N^  '  arc  1" 
[59] 
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For  the  oblique  boundary  line  between  California  and  Nevada  * 

s  =  650,000  m.,  (400  mi.),  0m  =  37°  00',  a  =  134°  33';  whence 
L>8'  =  1.8  meters  and  the  difference  in  azimuth  =  2".3. 

2DS' 

Fig.  68. 

For  the  western  boundary  of  Massachusetts  s  =  80,930  m., 

(50  mi.),  (})m  =  42°  24',  oc  =  195°  12';  this  gives  D8'  =  0.0015 
meter  and  Aa  =  o".oi6. 

PROBLEMS 

Problem  i.  Prove  by  the  process  outlined  in  the  first  paragraph  of  Art.  96  that 

the  radius  of  curvature  of  the  prime  vertical  section  of  the  spheroid  is  N,  the  nor- 
mal terminating  in  the  minor  axis. 

Problem  2.  A  model  of  the  spheroid  has  an  equatorial  diameter  of  12  ins.  and  a 

polar  diameter  of  7  ins.  Compute  the  correction  to  reduce  to  "sea-level"  the 
azimuth  of  a  line  in  latitude  45°,  the  azimuth  being  45°  and  the  elevation  of  object 
being  one  inch  above  the  surface  of  the  spheroid. 

Problem  3.  What  will  be  the  maximum  separation  of  two  plane  curves  drawn 

on  the  model  described  in  problem  2  ii  s  =  7.5  ins.,  mean  <j>  =  30°,  a  =  45°? 
(Use  the  approximate  formula.) 

*  See  Coast  Survey  Report  for  1900,  p.  368. 
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CALCULATION  OF  TRIANGULATION 

io8.  Preparation  of  the  Data. 

From  the  records  of  the  field-work  of  the  triangulation  we  ob- 
tain a  value  for  each  angle,  supposed  to  be  freed  from  the  errors 

of  the  instrument,  eccentricity  of  station,  phase  of  signal,  eleva- 
tion of  signal,  etc.  Before  these  angles  are  employed  for  solving 

the  triangles,  they  should  be  examined  to  see  if  they  satisfy  any 
geometric  conditions  existing  among  them.  If  at  any  station 
two  or  more  angles  and  their  sum  have  been  measured,  then  these 
angles  must  be  so  corrected  that  they  exactly  equal  their  sum. 

If  the  horizon  has  been  closed,  the  measured  angles  must  be  ad- 

justed so  that  tlieir  sum  equals  360°.  If  the  angles  have  been 
measured  with  different  degrees  of  precision,  as,  for  example, 
with  different  instruments  or  a  different  number  of  sets  or  of 

repetitions,  the  different  angles  should  be  given  proper  weights; 
and  if  the  best  possible  values  are  desired,  the  angles  at  each 
station  should  be  adjusted  by  the  method  of  least  squares. 

After  the  station  adjustment,  as  it  is  called,  has  been  completed, 
the  triangles  must  be  examined  to  see  if  the  sum  of  the  three 
angles  in  each  triangle  fulfills  the  requirement  that  this  sum 

shall  equal  180°  plus  the  spherical  excess  of  the  triangle.  The 
verticals  at  the  three  triangulation  stations  are  not  parallel  to 
each  other,  because  the  surface  is  curved.  Consequently  the 

sum  of  the  angles  will  exceed  180°  by  an  amount  which,  on  a 
spherical  surface,  would  be  exactly  proportional,  and  which,  on  a 

spheroidal  surface,  is  nearly  proportional  to  the  area  of  the  tri- 
angle. 

As  was  shown  in  the  preceding  chapter  .(Art.  102) ,  the  error  in  the 
direction  of  an  object,  due  to  the  fact  that  the  earth  is  spheroidal 

147 
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instead  of  spherical,  is  extremely  small,  even  when  the  object 
is  several  thousand  meters  above  sea-level.  Hence  it  follows 
that  if  the  vertices  of  a  spheroidal  triangle  are  projected  vertically 

onto  the  surface  of  a  tangent  sphere,*  the  errors  thus  produced 
in  the  horizontal  angles  of  the  triangle  will  be  much  less  than  the 
errors  in  the  measurement  of  the  angles,  because  the  points  on 

the  sphere  and  those  on  the  spheroid  are  separated  by  compara- 
tively short  distances.  This  enables  us  to  compute  spheroidal 

triangles  as  spherical  triangles  and  greatly  simplifies  the  com- 
putation. The  lengths  of  the  triangle  sides  will  be  practically 

the  same  on  the  two  surfaces. 

In  this  connection  it  is  well  to  bear  in  mind  that  if  the  topog- 

raphy of  the  earth's  surface  were  represented  on  an  18-inch 
globe  the  total  variation  in  elevation  would  scarcely  be  greater 
than  the  thickness  of  a  coat  of  varnish.  The  elevation  of  the 

geoid  above  the  spheroid  would  be  very  much  smaller  than  this, 
and  the  distance  between  the 

spheroid  and  the  tangent 

sphere  at  any  station  would 
usually  be  still  smaller.  This 
will  give  some  idea  of  the 
minuteness  of  the  errors  under 

discussion. 
It  should  be  remembered 

that,  whereas  the  triangulation 
stations  themselves  are  at  va- 

rious heights  above  sea-level, 
these  are  all  supposed  to  have  been  projected  down  vertically  onto 
the  spheroid  before  beginning  the  computation  of  the  triangle. 
The  points  of  which  we  shall  speak  in  discussing  the  solution  of 

the  triangles  and  the  geographical  positions  of  the  stations  are 

these  points  on  the  spheroidal  surface  and  not  the  original 
station  points. 

*  The  sphere  is  supposed  to  be  tangent  at  the  center  of  gravity  of  the  triangle  to 
be  computed. 



SPHERICAL  EXCESS  149 

In  solving  triangles  by  the  methods  given  below,  the  following 
approximations  have  been  made,  and  it  is  assumed  that  in  all 
cases  the  resulting  errors  are  neghgible. 

1.  The  reduction  to  sea-level  reduces  the  observed  direction 

to  that  corresponding  to  the  geoid  (or  actual  surface),  not  the 
spheroid,  as  is  assumed. 

2.  The  effect  of  local  deflection  of  the  plumb  line  is  not  allowed 
for. 

3.  The  effect  of  atmospheric  refraction  on  the  direction  (hori- 
zontal refraction)  is  neglected. 

4.  The  reduction  of  the  observed  direction  (plane  curve)  to 
that  of  the  geodetic,  or  shortest,  line  is  omitted.  There  are  in 
reality  eight  triangles  formed  by  the  plane  curves,  which  are 
treated  as  if  they  were  identical  (see  Art.  104). 

109.  Solution  of  a  Spherical  Triangle  by  Means  of  an  Auxiliary 
Plane  Triangle. 

The  direct  solution  of  the  triangles  of  a  net  as  spherical  triangles 
would  be  unnecessarily  complicated.  This  may  be  avoided  by 

employing  a  principle  known  as  Legendre's  Theorem,  namely, 
that  if  we. have  a  spherical  triangle  whose  sides  are  short  com- 

pared with  the  radius  of  the  sphere,  and  also  a  plane  triangle 
whose  sides  are  equal  in  length  to  the  corresponding  sides  of  the 

spherical  triangle,  then  the  corresponding  angles  of  the  two  tri- 
angles differ  by  approximately  the  same  quantity,  which  is  one- 

third  of  the  spherical  excess  of  the  triangle. 
no.  Spherical  Excess. 

The  spherical  excess  of  a  triangle  is  directly  proportional  to  its 
area,  as  shown  in  spherical  geometry.  Hence,  if  ylMs  the  area 
of  any  triangle,  R  is  the  radius  of  the  sphere,  S  is  the  surface  of 
the  sphere,  and  e  is  the  spherical  excess  of  the  triangle;  then, 

since  the  spherical  excess  of  the  tri-rectangular  triangle  is  - , 2 

T  I   „ 

2     
 8-^ 
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e  =  -r^r
- 

To  express  e  in  seconds  of  arc,  divide  by  arc  i",  and  we  have 

,/  A'  6c  sin  ̂  
i^^arci"      2R^2.xc\" 

[60] 

where  h,  c,  and  A  are  two  sides  and  the  included  angle  of  the  tri- 
angle, a  and  h  being  in  linear  units. 

The  sphere  which  is  tangent  to  the  spheroid  at  the  center  of 

gravity  of  the  triangle,  and  which  has  the  same  average  curva- 

ture, is  a  sphere  of  radius  ==  Vr^N;  whence 

„  &csin^  1,     •     A  r<  1 
e    = — z-^r;   -  =  fnocsmA.  loil 

2RmNa.rci" 

The  quantity  — ——z   r,  =  w  is  given  for  different  latitudes 
^  2  R„,N  arc  1" 

in  Table  XII.     The  latitude  to  be  used  in  finding  m  is  the  mean 

of  the  latitudes  of  the  three  vertices  of  the  triangle. 

Questions.  —  Is  this  auxiliary  plane  triangle  the  same  as  the  chord  triangle 
formed  by  joining  the  points  by  straight  lines?    Are  the  two  similar  in  shape? 

III.  Proof  of  Legendre's  Theorem. 

To  prove  Legendre's  theorem,  let  A',  B'  and  C  be  the  angles 
of  the  spherical  triangle,  and  A,  B,  and  C  those  of  the  plane  tri- 

angle; the  sides  of  the  plane  triangle  are  a,  b,  and  c,  and  those  of 

the  spherical  triangle  are  a'R,  b'R,  and  c'R,  then,  in  the  plane 
triangle, 

cos  A  =  — ' — ;   >  \a) 2  he 

or  sm^A  =  I  —  cos^^  =   tti,   > 

4  ¥r 2  a%^  -\-  2  a\^  -}-  2  h'^c^ 

4  bh'' 

Q>) 
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In  the  spherical  triangle, 

cos  a'  —  cos  h'  cos  c' 

cos^l'  = 
sin  h'  sin  c' 

Expanding  each  sine  and  cosine  (omitting  terms  of  higher 
order  than  the  fourth), 

(-?)(-?) 

0  c 

2b'c'  246  V 
"*~  12  6V 

whence    cos^'  = 

b'^  +  c"'-a'^  _i    2  a%'^  +  2  g^^c^^  +  2  b'\'^  -  a^^  -  fc^-*  -  c"' 

2b'c'  6*  46V 
From  (a),  (6),  and  (c) 

cos  A'  =  cos  ̂   —  I  b'c'  sin^  ̂ . 

Let  X  be  the  difference  between  A  and  A' .     Then 

■  cos  X  =  I  and  sin  x  =  x"  arc  \"  (nearly),  since  x  is  small, 

and  -*  cos -4'  =  cos  {A  +  x) 

=  cos  A  —  sin  ̂ ic"  arc  i" 

=  cos  A  —  I  b'c'  sin^  A ; 

that  is,        x"  arc  i''  sin  ̂   =  ̂   6'c'  sin^  ̂ . 

rru      t  n      i'c'  sin  A Therefore  x"  =   jr^ 6  arc  I 

ic) 
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or,  since  b'  =  —     and    c'  =  — » K  K 

,,         he  sin  A  ..  , 
6  R^  arc  i 

It  will  be  noticed  that  this  is  one-third  of  the  spherical  excess 
as  found  in  Equa.  [60].  The  same  result  would  also  be  found 

for  angles  B  and  C. 

112.  Error  of  Legendre's  Theorem. 

The  error  in  Legendre's  theorem  *  as  applied  to  the  sphere  may 
be  studied  by  carrying  out  the  above  series  so  as  to  include  terms 

of  higher  powers  than  the  fourth.  Jordan  (Vermessungskunde) 

gives  a  numerical  example  showing  the  amount  of  this  error  in  a 

triangle  of  which  the  side  ̂ C  is  about  65  miles  in  length;  the 

angles  are  shown  below: 

A'  =  AO°  39'  3o".38o 
B'  =  86  13  58  .840 

C  =  S3    06    45   .630 

180°  00'  I4".850 

Denoting  the  spherical  angles  by  A',  B',  C,  and  the  correspond- 
ing plane  angles  hy  A,  B,  C,  the  differences  are  as  follows,  the  first 

column  containing  the  values  derived  from  Legendre's  theorem 
in  its  ordinary  form,  the  second  containing  the  smaller  terms 

which  are  usually  neglected. 
Approx.  Exact. 

A'  —  A  4".95ooi8  4.950036 
B'  -  B  4  ..950018  4-949997 
C'  —  C  4  .950018  4.950021 

113.  Calculation  of  Spheroidal  Triangles  as  Spherical  Tri- 

angles. 
It  is  customary  to  assume  that  the  differences  between  the 

spherical  and  spheroidal  triangles  are  negligible  when  the  actual 

points  are  projected  down  onto  a  tangent  sphere  of  radius  Vr^N. 
Clarke,  in  his  Geodesy,  shows  the  error  of  this  assumption  in  the 

case  of  a  triangle  having  a  side  over  200  miles  long,  the  result 

being  as  follows: 

*  See  Coast  Survey  Special  Publication  No.  4,  p.  51. 
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Spheroidal Spherical 

A'
 

B'
 

a 

e'
 

98°  44'  37"-096s 
58°  16'  46".5994 
23°  00'  i2".7303 

i'  36".4262 

A 
B 
C 
e 

98°  44'  37".i899 
58°  16'  46".4737 
23°  00'  i2".7634 i'  36".427o 

The  preceding  example  indicates  that  in  triangles  composed  of 

lines  such  as  can  be  sighted  over  on  the  earth's  surface  the  error 
involved  in  computing  spheroidal  triangles  as  spherical  triangles 

is  negligible  in  practice. 
114.   Calculation  of  the  Plane  Triangle. 

After  the  spherical  excess  has,  been  computed,  the  angles  of  an 

auxiliary  plane  triangle  may  be  found  by  applying  Legendre's 
theorem,  that  is,  by  deducting  one-third  of  the  spherical  excess 
from  each  spherical  angle.  The  difference  between  the  sum  of 

these  plane  angles  and  180°  is  the  error  of  measurement  and  may 
be  distributed  equally  among  the  three  angles  unless  a  least- 
square  adjustment  is  to  be  made.  In  any  case  tHs  method  of 

distributing  the  error  may  be  used  for  a  preliminary  determina- 
tion of  the  distances.  The  lengths  of  the  triangle  sides  are  now 

found  by  plane  trigonometry.  Since  all  three  angles  of  a  tri- 
angle will  usually  be  known,  the  only  formula  that  will  be  used, 

except  in  rare  cases,  is  the  sine  formula, 

a  __  sin  A b      sinB 

A  convenient  arrangement  of  this  computation,  used  by    the 

Coast  and  Geodetic  Survey,  is  shown  in  the  following  table.     The 

spherical  excess  of  the  triangle  in  this  case  is  o".86,  which  give? 
I ".2  as  the  error  of  closure  of  the  triangle. 

stations. 
Observed 

angles. Correc- tion. Spheri- 
cal 

angles. Spheri- cal excess. 

Plane 

angles  and 
distances. Loga- 

rithms. 

Blue  Hill  to  Prospect   
a      1       tr 

61  47  18.8 

35  45  15.4 82  27  27,9 

0.4 

0.4 0.4 18.4 

15.0 

27.5 

0-3 

0.3 

0.3 

22723.08  m. 

61  47  18. r 

35  45  14.7 82  27  27.2 

15067.13 

25563.20 

4.356  4673 

0.054  9218 

9.7666415 

9.9962261 

Blue  Hill   

Prospect   

Observatory  to  Prospect. . . 
Observatory  to  Blue  Hill. . 

180  00  02.1 
4.1780306 

4.4076152 
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.    115.   Second  Method  of  Solution  by  Means  of  an  Auxiliary 

Plane  Triangle.* 
Another  method  of  solution  which  has  been  used  to  some  ex- 

tent in  Europe  is  as  follows: 

Let  ABC  (Fig.  69)  be  the  spherical  triangle  and  A'B'X  an 
auxiliary  plane  triangle  having  two  of  its  angles,  a  and  j8,  equal  to 

the  corresponding  angles  in  the  spherical  triangle.  Evidently 

the  third  angles  will  not  be  equal. 

'Y< 

Fig.  69. 

Let  a'  and  b'  in  the  plane  triangle  be  the  sides  corresponding 
to  a  and  b. 

In  the  spherical  triangle  we  have 
.    a 

sm  - 

sin  a  R 

sin  jS       .    b' 

and  in  the  plane  triangle 
sm  a      a 

sin  i3  ~  6' 
for  all  values  that  may  be  given  to  a'  and  b';  whence 

a  a' sm 
R      a'      R 

.    b      b'      b' 

''""r  R 

*  See  Jordan,  Vermessungskunde,  Vol.  Ill,  39. 
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This  equation  is  satisfied  if  we  place 
a'       .    a 

h'       .    b 

and  R^^^^r' 

The  general  expression  for  any  triangle  side  may  be  written 
s'        .    s 

I  r  =  ''''r' 
s'  being  the  side  of  an  auxiliary  plane  triangle  corresponding  to 
the  side  s  of  the  spherical  triangle. 

i     Taking  logs  of  both  members, 

Iog|  =  logsin|  =  log(|-g^  +  ̂   .  .  .  ) 

=  log|  +  log(i-g^,+      -)- 
Now,  since 

X   1 —       •   •   ) 

(where  M  =  loge  10  =  0,4342945,  the  modulus  of  the  common 
logarithms),  we  may  write 

log^  =  logsin-^  =  log^ 

"^      \     6R^      120R*   '  '  '  J       2\     6Ry    '  '  ' 

^R    eR" 

Therefore   .  ^''^R~^''^R^6¥' 

Ms" 6R^ 

.^^'^ 

or  log5-log/ =^^2'  [63] 

which  is  the  correction  to  the  log  of  the  triangle  side. 

M     s^ *  The  next  term  =  — —  •  rr;  =  0.000  000  0001  for  a  distance  of  100  kilometers. 
180   it* 
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In  calculating  this  correction,  F?  should  be  replaced  by  RmN. 
Values  of  these  corrections  will  be  found  in  Table  XIII  for  the 

argument  log  s. 

Example. 

Stations. Spherical  angles. 
Distances. 

Logarithms. 

Blue  Hill  to  Prospect   
Correction   
s'   
Observatory   
Blue  Hill   

a         1         II 

6i  47  18.4 

35  45  15  0 
82  27  27.5 

22,723.08 

15.067.13 

25,563.20 

4-3564673 

9 

4.3564664 0.054  9215 

9.766  6423 

9.996  2262 
4.1780302 

4 

4.178  0306 

4.407  6141 II 

4.407  6152 

Prospect   

s'   
Correction   
Observatory  to  Prospect.  . 
s'   
Correction   
Observatory  to  Blue  Hill. . 

Notice  that  after  the  base  of  the  first  triangle  has  once  been 
reduced  by  subtracting  the  correction,  the  computation  of  the 
whole  chain  of  triangles  may  be  carried  out,  using  the  spherical 
angles  only.  It  is  not  necessary  to  add  the  corrections  to  the 
logarithms  of  the  computed  sides  until  their  true  values  are  to  be 
found. 

PROBLEMS 

Problem  i.  Compute  the  area  in  square  miles  of  a  triangle  on  the  earth's  sur- 
face having  a  spherical  excess  of  i",  assuming  that  the  earth  is  a  sphere  of  radius 

3960  miles. 
Problem  2.     Compute  the  sides  of  the  following  triangles: 

(o) 

Station. 

Mt.  Ellen 
Tushar 
Wasatch 

Correction  to 
angles  from 

figure  adjtistment. 
-o".7o 

+0  .98 
— o  .06 

Error  of 
closure  of 
triangle. 

+0".22 

Corrected 
spherical  angles. 

49°  36'  36".88 
55  56  26  .70 74    27    30  .75 

Spherical excess. 

34-33 

Wasatch  to  Mt.  Ellen;  azimuth,  333°oi'o8".65;  back-azimuth,  153°  25'o5".oo; 

dist.  123,556.70  meters;  logarithm,  5.0918663.  Latitude  of  Wasatch,  39°  06'- 
54".364;  longitude,  111°  27'  ii".9i5. 

+o".i7     )  C     31°  54'  6i".57     )  „ 
-o  .10    >      +o".65      {    98    16    41  -16     \     46  .15 

(6)    Uncompahgre 
Mt.  Waas 
Tavaputs +0  .58 

49    48    63  .42 
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Mt.  Waas  to  Uncompahgre;  azimuth,  288°  01'  25". 71;  back-azimuth,  109°  07'- 
o6".ii;  dist.  162,928.01  meters,  logarithm,  5. 211 9958.  Latitude  Mt.  Waas, 

38°  32'  2i".444;  longitude,  109°  13'  38".302. 

Problems.    Position  of  point  B    {    i^^^]  ̂$  H' l^^ll^ 

Position  of  noinf  r      1       lat.   38°   51'   5o"
.9I3 I'osition  ot  pomt  C     ̂     ̂̂ ^^  ̂ go  ̂ ^>  ̂^",^08 

Azimuth  5  to  C  353°  17'  2i".8i;  dist.  40232.35  meters;  (log  =  4.6045754); 
back -azimuth  173°  19'  24".64. 

The  spherical  angles  are    A  57°  53'  i4".39  (A  is  east  of  BC.) 
B  62°  23'  3i".40 

C  59°  43'  i7"-93 
Compute  the  spherical  excess  and  solve  the  triangle. 

,  Problem  4.  Position  of  pt.  L;  latitude  42°  26'  i3".276,  longitude  70°  55'52".o88. 

Distance  L  to  N,  3012.0  meters  (log  =  3.478  8600).  Azimuth  L  to  N,  314°  34'  00"; 
back-azimuth,  134°  35'  03".  Position  of  pt.  N,  latitude  42°  25'  o4".764,  longitude 

70°  54' i8".232.  Angle  at  L,  36°  15' 07";  at  N,  63°  44' 59";  at  E,  79°  SQ' 57"- 
(£  is  east  of  LN.)     Compute  the  spherical  excess  and  solve  the  triangle. 

Problem  5.  The  observed  angles  of  a  triangle  and  their  corrections  as  found  by 

adjustment  are  as  follows: 
Angle.  Corrections. 

Sand  Hill  40°  57'  28".i3  -o".3S 
Rutherford  54    22    59  .51  — o  .61 
Miller  84    39    35  .03  -o  .44 

The  position  of  Rutherford  is  latitude  =  37°  08'  57".928  N,  longitude  = 
98°o6'3i".6i8W.  The  position  of  Miller  is  latitude  =  37°  02' 2o".963  N, 

longitude  97°  55'  43".9o8  W.  The  azimuth  from  Miller  to  Rutherford  =127°  28'- 
i7".95;  back-azimuth  307°  21' 47".3o.  Distance  in  meters,  20139.64;  logarithm, 
4.304  0518.     Solve  the  triangle. 

Problem  6.  Show  that  the  substitution  of  Equa.  (b)  p.  150  in  Equa.  (c)  p.  151 
is  permissible  under  the  assumptions  made  in  Arts.  109  and  iii. 



CHAPTER  Vn 

CALCULATION  OF  GEODETIC  POSITIONS 

1 1 6.   Calculation  of  Geodetic  Positions. 

In  geodetic  surveys  covering  large  areas  the  positions  of  the 
triangulation  points  are  expressed  by  means  of  their  latitudes 
and  longitudes.  Over  limited  areas  a  system  of  rectangular 
spherical  coordinates  may  be  used  to  advantage,  but  for  such 
areas  as  have  to  be  surveyed  in  this  country  the  latitude  and 
longitude  system  is  preferable. 

Before  the  latitude  and  longitude  of  one  triangulation  station 
can  be  calculated  from  the  coordinates  of  another  station,  it  is 
necessary  to  know  the  dimensions  of  the  spheroid  which  is  taken 

to  represent  the  earth's  figure,  and  also  to  fix  definitely  the  lati- 
tude and  longitude  of  some  specified  station,  as  well  as  the 

azimuth  of  the  direction  to  some  other  triangulation  station. 

This  selected  position  and  direction  determine  the  relative  posi- 
tion of  the  whole  survey  with  respect  to  the  adopted  spheroid, 

and  constitute  what  is  known  as  the  geodetic, datum.  The  surveys 
of  different  countries  may  be  computed  on  different  spheroids 
or  may  be  located  inconsistently  on  the  same  spheroid.  The 
different  portions  of  a  survey  of  the  same  coimtry  will  be  located 

inconsistently  on  the  same  spheroid  until  they  have  been  con- 
nected by  triangulation. 

The  two  spheroids  which  have  been  most  extensively  used  for 
geodetic  surveys  are  (i)  that  computed  by  Bessel  in  1841,  and  (2) 
that  by  Clarke  in  1866.  The  Bessel  spheroid  was  computed  from 

data  obtained  chiefly  on  the  continent  of  Europe,  and  conse- 
quently conforms  closely  to  the  curvature  of  that  portion  of  the 

earth.  This  spheroid  is  still  in  general  use  in  Europe.  Clarke's 
spheroid  of  1866  was  computed  from  arcs  distributed  over  a  much 

158 
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larger  portion  of  the  earth's  surface;  it  shows  a  greater  amount 
of  flattening  at  the  poles  than  the  Bessel  spheroid,  and  conse- 

quently assigns  a  flatter  curvature  to  the  surface  in  the  latitude 

of  Europe  and  of  the  United  States.  The  Bessel  spheroid  was 

employed  by  the  Coast  Survey  in  the  earUer  years.  As  the  sur- 
veys gradually  extended,  the  errors  due  to  using  this  spheroid 

became  more  and  more  apparent,  until  finally,  in  1880,  it  was 

decided  to  change  to  the  Clarke  spheroid.  The  latter  conforms 

much  more  nearly  to  the  curvature  of  the  surface  in  the  United 
States. 

117.   The  North  American  Datuiri.* 
In   1 90 1    the  United  States   Coast  and   Geodetic   Survey 

adopted  what  was  then  called  the  United  States  Standard  Datum, 

by  assigning  to  the  station  Meade's  Ranch  the  following  position 
on  the  Clarke  spheroid: 

Latitude,  39°  13'  26".686 
Longitude,  98°  32'  3o".5o6 
Azimuth  to  Waldo,    75°  28'  i4".52    - 

In  1 91 3  this  d^-tum  was  adopted  by  the  governments  of  Canada 
and  Mexico,  ahd  it  is  now  known  as  the  North  American 
Datum.  \  > 

In  deciding  upon  a  geodetic  datum  it  was  necessary  to  con- 

sider two  important  points:  first,  the  datum' should  be  so  chosen 
as  to  reduce  to  a  minimum  the  labor  of  recomputing  the  geodetic 

positions;  second,  it  must  place  the  triangulation  system  in  such 

a  position  that  no  serious  error  will  occur  in  any  part  of  the  sys- 
tem. At  the  time  this  daturn  was  selected  there  was  a  large 

number  of  triangulation  points  located  along  the  Atlantic  Coast, 

By  selecting  a  position  for  Headers  Ranch  consistent  with  the  old 
datum  upon  which  this  triangulation  was  calculated,  a  large 

amount  of  recomputation  was  avoided.  At  the  same  time  it  was 

apparent  that  this  also  placed  the  triangulation  very  near  to  its 
theoretically  best  position. 

*  See  Coast  Survey  Special  Publication  No.  24,  p.  8,  or  Special  Publication  No. 
19,  p.  80. 
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ii8.  Method  of  Computing  Latitude  and  Longitude. 
Assuming  that  the  latitude  and  longitude  of  a  station  (A)  are 

known,  as  well  as  the  distance  and  azimuth  to  a  second  station 

(B),  we  will  now  develop  the  formulas  *  necessary  to  compute 
the  geodetic  latitude  and  longitude  of  the  second  point  In 

doing  this  we  shall  have  to  solve  the  differential  spherical  tri- 
angle formed  by  joining  the  two  points  with  the  pole. 

Fig.  70. 

119.  Difference  in  Latitude. 

In  Fig.  70,  P'  is  the  pole  of  the  spheroid.  P  is  the  pole  of  a 
sphere  tangent  to  the  spheroid  along  the  parallel  of  latitude 
through  A.  The  radius  of  the  sphere  is  N,  and  its  center  is  at 
H.    Let  A  be  the  known  station  and  B  the  unknown  station. 

*  These  formulae  were  first  given  by  Puissant;  see  his  Traitd  de  Gfiodesie,  Vol.  I; 
see  also  Coast  and  Geodetic  Survey  Report  for  1894,  and  Special  Publication  No.  8. 



DIFFERENCE  IN  LATITUDE  l6l 

The  angular  distance  of  A  from  the  pole  is  7;  the  unknown  dis- 

tance oi  Bisy';a  is  the  arc  AB;aia  the  azimuth;  and  e  =  180°  —  a. 

If  7'  is  computed  by  a  direct  solution  of  the  spherical  triangle 
ABPy  the  required  precision  can  be  reached  only  by  the  use  of 

about  ten-place  logarithms.  It  is  more  convenient,  and  quite  as 

accurate,  for  such  short  Unes  as  occur  in  practice,  to  employ  for- 

mulae giving  the  difference  in  latitude,  that  is  7  —  7'. 

The  formula  for  the  direct*  solution  of  7'  in  the  spherical  tri- 
angle is 

cos  7'  =  cos  7  cos  0-  -f  sin  7  sin  a  cos  e.  {a) 

Since  7'  is  a  function  of  a,  its  value  may  be  expressed  as  a  con- 

verging series  by  means  of  Maclaurin's  formula,  giving 

7  =  7^=0  +  -;;   •  •  <r  H   —   <r  +  -  yz   a^  +  •  -  -  .     {b) 

To  evaluate  the  three  differential  coefficients,  differentiate 
Equa.  (a)  three  times  in  succession,  and  in  each  resulting  equation 
substitute  a  =  o.  The  results  of  the  first  two  differentiations 
are  as  follows: 

—  sin  7  — ^  =  —  cos  7  sin  (7  -f-  sin  7  cos  a  cos  e,  {c) 
da 

—  Sin  7  —h-  —  cos  7  I  -J-     =  —  cos  7  cos  0-  —  sin  7  sin  a  cos  e da^  \da  J 

=  -cosy,  (by  (a)).  (J) 

Before  differentiating  a  third  time,  (</)  may  be  written 

^        ,dS'/dy'Y  /x 

Differentiating  (e),  we  have 

tan    ''^''^'-l-sec^    '   ̂'^'   ̂ V^^^^V   ̂ V </a^                       6?(r     da^           da     da^ 

=  0, 

When                 a  =  0,        7'  =  7, 
and  (c)  becomes 

(/) 

dy 

—  sin  7  y-  =  sin  7  cos  e. da 
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Therefore  —- =  —cose.  (g) 

(e)  becomes 

da 

\2ja.y-r^  +  cos^e  =  I. 

Therefore  — ^  =  sin^  e  cot  7.  (A) 

(/")  becomes 

tan  7  T^  +  sec^  7  ( —  cos e)  (sin^  e  cot  7)  +  2  ( —  cos  e)  (sin^ e  cot7)  =  o. d<r d^y 

Therefore  -7-  =  cos  e  sin^  e  cot^  7  (2  +  sec^  7) 

=  (2  cot^  7  +  cosec^  7)  sin^  e  cos  e 

=  (i  +  3  cot^  7)  sin^  e  cos  e.  (t) 

Substituting  these  results,  (g),  (h),  and  (i)  in  equation  (6), 

Maclaurin's  series,  we  obtain 

<r 

<r3
 

7'=7  — o-coseH   sin^ecot7+— ■(i+3C0t^7)sin^€C0Sc+  •••.(/) 2  0 

Changing  to  latitudes  and  azimuths  by  placing 

7    =     90    -  0  , 

7  =     90°  -  <^, 
€  =  180    —  a, 

Equation  (j)  becomes 

^2 

4>  —  4>  =  a  cos  a  H —  sin^  a  tan  4> 2 

— -  (i +3  tan'^<^)sin^Q!COSa  ...       (k) 6 

In  order  to  transfer  the  coordinates  of  the  triangulation  points 

from  the  sphere  to  the  spheroid,  it  should  be  noticed  that  if  the 

radius  of  the  sphere  is  N  (the  normal)  and  its  center  is  at  H  (Fig. 

70),  and  the  polar  axes  of  the  sphere  and  spheroid  coincide,  then 

the  parallels  of  latitude  through  A  coincide,  the  spheroid  being 

tangent  to  the  sphere  along  this  parallel;  also,  the  latitude  {4>) 
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will  be  the  same  for  both  surfaces,  and  the  distances  and  azimuths 

oi  AB  on  the  two  will  differ  by  inappreciable  quantities.     We 

may  therefore  put  a  =  -z,  where  s  is  the  distance  in  linear  units. 

Then  (k)  becomes 

.y  cos  a  ,     5^     .  9    ̂       ,       s^ 
(l)  —  4>'  =  — — — h  7^  sin^  a  tan  <i>  —  —r-  sin^  a  cos  a  (i  +  3  tan^  0) .  (J) 

The  difference  in  latitude  should  be  measured,  however,  on  a 

curve  of  radius  Rm,  since  it  is  measured  along  a  meridian.  The 

linear  difference  in  latitude  is  nearly  the  same  for  the  two  sur- 
faces, and  the  angular  difference  in  latitude  will  vary  inversely  as 

the  radii;  that  is, 

{<t>  -  <i>')N  =  A</>"  Rm  arc  1" .  (m) 

Therefore  A0"  =  (0  -  </>')  „    ̂     ,,, 
Am  arc  1 

^(f)"  being  in  seconds  of  arc  on  the  spheroid,  and  Rm  the  radius 
of  curvature  of  the  meridian  at  the  middle  point  between  the 

parallels  through  A  and  B.  The  difference  in  latitude  is  there- 
fore 

.    ,f       scosa        .y^sin^atanc/)     5^sin^Q;coscK(i+3tan^<^)    /  >, 

"^   ~  RM2.rci"     2NRM^rci"~  aiV^^Marci"  '  ^^^ 
Since  the  middle  latitude  is  not  known  at  the  beginning  of  the 

computation,  it  is  more  convenient  first  to  take  out  the  value  of 

R,„  for  the  known  latitude  of  A,  giving  5</)",  and  then  to  correct 

to  Rm  by  changing  b(i>"  to  A^"  in  the  inverse  ratio  of  the  radii. 

Since  —  =  — -, 
Km       Km 

Rm  —  Rm\ 

M  \  Rm A0"  =  8<l>"  ̂   =  8<f>"  (1  - Km  \ 

in  which  8<t>"  — -^  is  a  correction  to  be  subtracted  from  the  first 

Rm 

value. 
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g  (i  -  e^) From  [43]       Rm  = 

Therefore         dRm  = 

(i  —  e^  sin^  4>)i 

g  (i  —  g^)  •  3  e^  sin  ̂   cos  <t>  d^ 

(i  -e^siiK^)^ 

Since  dRm  is  half  the  change  from  the  starting  point  to  the 

middle  point,  J0  is  taken  as  half  the  difference  in  latitude,  50; 
that  is, 

,        60  arc  1" 
a<p  ̂    

2 

Therefore        «*"  ̂   =  3^'sin,|,co
s,f.arc  i"      „,, 

If  we  now  put  for  brevity  —   r,  =  B,  — t—   jj  =  C, 
^  ^  Rm  arc  1"  2  NRm  arc  i" 

-f^^^  =  h  (the  first  term  in  (n)),  and  '  "^/^^.r'"^  =  E,  then /?,„arci  oiV 

Equa.  (w)  becomes 

—  A0"  =  s  'B  '  cos  a  +  5^  •  C  •  sin^  a 
+  (50")'  •  £>  -  ̂.  52 .  £  .  sin2  a,     [64] 

and  the  new  latitude  is  given  by 

0'  =  0  +  A0".  [65] 

The  logarithms  of  the  factors  B,  C,  D,  and  E  are  given  in 

Table  XIV,  p.  351,  in  metric  units,  for  the  Clarke  spheroid  of 
1866. 

The  D  term  is  inserted  before  the  E  term,  because  it  is  usually 

the  larger.  The  E  term  may  be  omitted  when  log  s  is  less  than 

4.23.  .  .  .  The  D  term  may  be  omitted  when  log  5  is  less  than 

2.31  ...  ,  and /f2  may  be  substituted  for  (50")2  when  log  5  is  less 
than  4.93.  .  .  .  The  fourth  differential  coefficient  in  the  series 

may  be  neglected  except  for  the  very  longest  lines  (see  Coast  Sur- 
vey Report  for  1894,  p.  284) 

120.  Difference  in  Longitude. 

The  difference  in  longitude  is  such  a  small  angle  that  we  may 
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obtain  it  with  sufficient  precision  by  a  direct  solution  of  the  tri- 

angle PAB,  Fig.  70,  using  7-place  logarithms. 
Applying  the  law  of  sines, 

.     . ,       sin  (T  sin  a 
sin  AX  =   ; — cos  (/) 

The  sphere  on  which  the  points  are  projected  is  that  whose 

radius  is  N'  and  whose  center  is  at  H'  corresponding  to  point  B. 

As  before,  let  a  =  rrr- N 

Therefore  sin  AX  =  sin-rrr   :•  (/>) 

N'    COS0'  ^ 

In  practice  it  is  more  convenient  to  solve  the  equation  in  the 
form 

AX"  arc  i"  =  tt:  •  sin  a  sec  0', N 

and  then  to  apply  corrections  for  the  difference  between  the  arc 

and  sine;  the  equation  should  therefore  be  written 

AX''  -  corr.iogAx  =  tT/   77 '  sin  a  sec  <^'  —  corr.iogg, N  arc  I 

since  each  side  of  the  equation  is  too  large  by  the  difference  be- 
tween the  arc  and  sine. 

Placing  -r;   77  =  A'  the  equation  becomes 
N'  arc  i"  '  ^ 

Ax"  =  yl  •  5  •  sin  a  sec  (/)'  -H  corr.iogAx  —  corr.iog^  [66] 

in  which  the  corrections  are  to  be  applied  to  the  logarithms. 

Values  of  log  A'  will  be  found  in  Table  XIV,  p.  351. 
In  Art.  115,  p.  154,  it  was  shown  that 

,       s       ,       .    s       Ms^ 
log--logsm-  =  — , 

when  s  is  the  length  of  any  line  on  the  surface. 
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s 

If  —  is  an  angle  expressed  in  seconds,  then  the  last  equation K 

becomes 

s  s 
log  —  —  log  sin  —  = 

m(j-\  arc^i"
 

R         "^       R  6 

Taking  logs  of  both  members, 

log  (difjf .  of  logs)  =  log  [—^Y^  +  2  log  (^j- 

Applying  this  formula  first  to  AX", 

log  (diff.  of  logs)  =  8.2308  +  2  log  AX".  (q) 

Apply  the  formula  to  — ,  and,  observing  that  the  second  term  is 

' '"S^i^T^,  we  have 

log  (diff.  of  logs.)  =  8.2308  +  2  log  5  +  2  log  ̂ '  (r) 
=  5.2488* +  2  log 5.  (s) 

This  correction  is  to  be  subtracted  because  arc  —r,  is  greater  than N 

sm (fI 
In  Table  XIII  the  corrections  are  tabulated  to  show  the  values 

of  log  5  and  log  AX"  for  the  same  log  diff.  The  correction  for 

log  s  is  negative  and  that  for  log  AX"  is  positive.  The  algebraic 

sum  of  the  two  corrections  is  to  be  added  to  log  AX".  The 
method  of  making  these  corrections  is  illustrated  in  the  example 

on  p.  170.     The  new  longitude  X'  is  given  by 
X'  =  X  +  AX".  [67] 

121.  Forward  and  Back  Azimuths. 

Owing  to  the  convergence  of  the  meridians  the  forward  and  re- 

verse azimuths  of  a  line  will  not  differ  by  exactly  180°,  as  in  plane 

*  Based  on  the  value  8.5090  for  log  A'. 
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coordinates.     The  amount  of  this  convergence  is  computed  as 
follows: 

In  the  triangle  PAB,  Fig.  70,  by  Napier's  analogies, 

2  2  cos  Ht    +  7) 

Substituting,  and  noting  that  A  -\-  B  -\-  Aa  =  180°,  and  that 
an  increase  in  AX  causes  a  decrease  in  A  a, 

..  I  A  ^  I' A X    cos h  ((I)  —  <t>) -  cot  -  Aa  =  cot  -  AX  •  .    ,  ;  — ^> 
2  2  sm  t  (0  +  </)') 

wtience -  tan  -  Aa  =  tan  -  AX   ,  ,  ,i 
2  2       cos  i  (</>  —  </) ) 

,      I  ..     sin^TO 
=  tan  -  AX  • 

cos 

A<A 

Therefore 

cos- 

Aa      ̂      _,  /,      AX    sm  <f), 
—  =  tan  ̂   /  tan   
2  j         2 

Putting  for  I  A  a  the  series 
sin  0; 

A0 

tan  -  AX  •  ■ 2 
cos 

A(^ 

tan  -  Ax 
2 

sm(^« 

cos 

A<^ 

+ 

and  for  tan  ̂   AX  the  series 

then 
I  a 

  Aa  = 
2 

2        3 

^X3\  sin  0^  1 I 

24  /        A0 

cos-^ 

3 

2  J 

=  iAX..'^"^"
 

cos 
A(/) 

AX^    sin(/) 

24 

cos 

A<^ 
(iAX  +  ̂") 

\2  24/ 

AX^    sin^  (i>m 

24         ,A0 

cos^  — ^ 

sin<^„ 

24/       A0 

cos-^^ 

2 

+ 

+ 
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Multiplying  by  2  and  factoring  out   > 

24 

12  VcosI  A0      cosH  A0/ 

sin<^B 

cos  §  A^ 

Placing  cos  |  A0  =  i  in  the  small  tenn  and  reducing  Aa  and 
AX  to  seconds  of  arc, 

-  Aa"  =  AX"  -i^l%_  +  i  (AX")3  sin  <f>„.  cos^  0„  arc^  i" cos  f  A0      12 

=  AX"sin0^sec^  +  (AX")«.F,  [68] 2 

in  which  F  is  an  abbreviation  for  ̂ ^2  sin  </>»»  cos^  <^m  arc^  i"  and  is 
given  by  its  log  in  Table  XIV.     This  F  term  amounts  to  only 

o".oi  when  log  AX"  =  3.36.  .  .  . 
The  back  azimuth  a  is  given  by 

a'  =  a  +  Aa  +  i8o°.  [69] 

In  calculating  the  geodetic  position  of  a  point,  the  azimuth  of 

the  line  to  that  point  is  to  be  found  from  the  known  azimuth  of 

the  fixed  side  of  the  triangle  by  using  the  corrected  spherical 

angle,  not  the  plane  angle  of  the  auxiliary  triangle.  The  com- 

putations of  (f)'  and  X'  may  be  verified  by  computing  the  position 

from  two  sides  of  the  triangle  and  noting  whether  the  same  0' 
and  X'  are  obtained  from  the  two  lines.  The  reverse  azimuths 

are  checked  by  noting  whether  their  difference  equals  the  spher- 
ical angle  at  the  new  station.  In  this  manner  the  calculation  of 

each  triangle  may  be  made  to  check  itself. 
122.  Formulae  for  Computation. 

For  convenience  of  reference  the  working  formulae  are  here 

brought  together. 

-A<l,  =  S'B'C0Sa-{-s^sm''a'C-\-(8<l>'y'D-h'S^'sm^a'E*  [64] 

AX  =  ̂ '.5.  sin  a  sec  0'  [66] 

*  The  value  of  —A<t>  may  be  made  more  accurate  by  the  addition  of  the  following 
term: 

-Is^-k'E  +  ̂ s^cos'a-k'E  +  hs^'COs'ct  sec^  ,t>-A^'k  arc^  i", 
in  which  k  =s^ '  sin^  a  •  C. 
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(or,  log  AX"  =  log  5  +  Clog  AX  -  Ciogs+log  sin  a+\ogA'-\-  log  sec  </>'), 

-  Aa  =  AX"  sin  |(0  +  4>')  sec  §  A«^  +  (AX")^ .  F,  [68] 
in  which 

h  =  s  •  cos  a  •  B, 

—  8<f>  =  s  •  cos  a  '  B  +  s^ sin^  a  >€  —  hs^  sin^ a  •  £. 

The  position  of  the  new  point  and  the  reverse  azimuth  are  then 

given  by 
<^'  =  0  +  A«A,  [65] 
V  =  X  +  AX,  [67] 
a'  =  a  +  Aa  +  l8o°.  [69] 

The  arrangement  of  the  computation  is  illustrated  by  the  fol- 
lowing example.  The  two  pages  show  the  two  computations  of  a 

position  in  the  same  triangle. 
In  the  first  page  of  the  computation,  the  known  station  is  Waldo 

and  the  position  of  Bunker  Hill  is  to  be  found.  Since  the  value 

of  Aa  depends  upon  AX  and  AX"  depends  upon  (p',  the  three  parts 
of  the  solution  must  be  carried  out  in  the  order  indicated.  In 

computing  A(^,  take  out  B,  C,  D,  and  E  for  the  given  latitude  0. 
The  (50)  used  in  the  D  term  is  usually  taken  as  the  algebraic  sum 

of  the  first  two  terms  of  the  series;  if  the  E  term  is  large,  it  should 

be  included  also.  The  h  in  the  E  term  is  the  first  (B)  term  alone. 

The  algebraic  signs  of  the  functions  of  a  are  important  and  should 

be  carefully  attended  to. 

When  computing  AX,  0'  is  known  and  the  factor  log^l'  must 

be  taken  out  for  this  new  latitude  0',  not  for  0.  The  primes  are 
inserted  to  call  attention  to  this.  To  correct  for  the  difference 

between  the  arc  and  the  sine,  enter  Table  XIII  with  log  AX  and 

log  s  as  arguments.  The  algebraic  sum  of  the  two  values  of 

"log.  diff."  is  the  correction  to  be  applied  to  log  AX.  The  value 
of  Aa  is  found  last. 

The  values  of  0'  and  X'  are  checked  by  noting  whether  the 
same  values  are  obtained  from  the  two  computations.  The  two 

reverse  azimuths  should  differ  by  the  spherical  angle  at  the  new 
station,  which  checks  the  computations  of  Aa. 
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a 

Z 

a 

Aa 

a'
 

Waldo  to  Meade's  Ranch 
Meade's  Ranch  and  Bunker  Hill 

255°    17'  I7'-S2 86     20   54    .50 

Waldo  to  Bunker  Hill 
341      38    12  .02 

+4    43  .09 

Bunker  Hill  to  Waldo 

Third  angle 

180° 

161      42    55  .11 

38     08    34  .02 

A<t> 39°     09' 55". 64s 
-17  39   -209 

Waldo 

•s  =  34.407-64  meters 

Bunker  Hill 

X 
AX 

X'
 

98°      49' so".  128     • -07   29    .652 

98       42  20   .476 38       52  16   .436 

s 

cos  a 
B 

h 

1st  term 

2d  term 

3rd  and  4th 
terms 
-A<p 

i  (0  +  0') 

4-5366549 

9.9773018 
8.510  9150 

sin*  a 
C 

3d  term 

4th  term 

s 

sin  <x 

A' 

sec
  

<t>'
 

9  07331 
8.99674 
I. 31553 

D 

Arg 

s 

AX 

6.0499 

2.3832 

-k 

j2  sin2  a 

E 

(AX)3 

F 

AX 

sin  H0  +  *') 
sec  h  (A0) 

-Aa 

3- 0249 « 

8.0700 6.0871 

3.024  8717 

1058".  9409 
0   . 2429 

9-38558 

+0.0271 

—0.0015 

8.4331 

—21 

+03 

7.1«20« 
7-959 

7.872 1059   .1838 

+  .0256 

+0.0256 
4-536  6549 

9.498  3680  n 8.5091469 

0.1087088 

S.831 

2.652  877  n 

9-799043 
I 

1059.2094 

39°  01' 06". 04 

2.652  8786  « 

18 

Corr. 

-18 

2.451  921  n 

-283".  09 

AX 

2.652  8768  « 

449"  652 

123.  The  Inverse  Problem. 

Not  infrequently  it  is  required  to  find  the  distance  and  mutual 
azimuths  between  two  stations  whose  latitudes  and  longitudes 
are  known. 

If  we  place  ic  =  5  sin  a  and  y  =  s  cos  a,  then,  from  Equa.  [66] 
and  [64],  we  have 

AX  cos  <f)' 

X  = 

A' 

[70] and 
y=  -^[^<t>  +  Cx'  +  D  {8<t>y  +  E  (A0)  x^l  [71] 

from  which 

and 

X      AX  cos  <f) 
tan  a  =  -  =  — —. — ; — 

y        A  'h 
s  =  y  SQCa 

=  X  cosec  a 

.! 

[72] [73] 
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a 

I 
a 

Aa 

n'
 

Meade's  Ranch  to  Waldo 
Bunker  Hill  and  Waldo 

75°     28'  14".  52 
55       30  33    .73 

Meade's  Ranch  to  Bunker  Hill 19       57  40    .79 -06  II    .66 

Bunker  Hill  to  Meade's  Ranch 

180 

199       SI   29    .13 

A(t> 39°     13' 26". 686 —21   10   .250 
Meade's  Ranch 

s  =  41,661.11  meters 

Bunker  Hill 

X 

AX 

X' 

98°     32' 30". 506 
+09  49    969 

38       52   16    .436 

98 

42    20    .475 

s 

cos  a 

B 

h 

1st  term 

2d  term 

3d  and  4th 
term -A<t> 

4.6197308 

9.9730924 
8.5109105 

52 

sin2  a 
C 

3d  term 

4th  term 

sin  a 

A' 

sec  0' 

9-23946 
9.06649 
I. 31644 

D 

Arg. 

AX 

6.2076 

2.3835 

-h 

j'  sin2  a 

E 

(AX)» 

F 

AX 

sin  i  (0  +0') 
sec  i  (A0) 

3- 1037 « 

8.3060 
6.0882 

3-103  7337 

+1269.795 
0.419 

9.62239 

+0.0390 —0.0031 

8.59II 

-31 

+06 

7-4979  « 

8.312 

7.871 +1270.214 

+0.036 

+0.0359 

4.6197308 

9  5332455 
8.509  1469 

0  1087088 

6.183 

2.770830 

9-799  317 
2 

+  1270.250 

39°  02' si". S6 2.7708320 

-25 

Corr. 

-25 

2.570  149 

371". 66 AX 

2.770829s 

+S89".9694 

Aa 

The  inverse  solution  may  be  worked  out  on  the  same  printed 

form  that  is  used  for  the  direct  solution,  but  the  order  of  procedure 

is  modified  as  follows:  First,  compute  x  by  Equa.  [70],  then  the 

C,  D,  and  E  terms  in  Equa.  [71],  obtaining  finally  y.  The  azi- 
muth is  then  found  through  its  tangent;  the  calculation  of  5  is 

the  final  step. 

124.   Location  of  Boundaries. 

Whenever  it  becomes  necessary  to  establish  on  the  ground  a 

boundary  line  between  two  states  or  countries,  the  length  of  the 

lines  and  the  accuracy  demanded  usually  make  it  necessary  to 

employ  geodetic  methods.  A  boundary  may  consist  of  a 

meridian  arc,  a  parallel  of  latitude,  or  a  great  circle  inclined  to  the 

meridian;  or  it  may  be  a  combination  of  these. 



172  CALCULATION  OF   GEODETIC  POSITIONS 

125.  Location  of  Meridian. 
If  a  boundary  is  a  meridian  arc  the  longitude  of  which  is  fixed 

by  law,  it  is  first  necessary  to  assume  approximate  positions  for 
the  terminal  points,  and  then  to  determine  the  longitude  of  these 
by  direct  observations.  These  points  are  then  corrected  in 
position.  After  the  terminals  have  been  established  on  the 
ground,  the  line  may  be  run  from  one  to  the  other  as  a  random 
line,  to  be  subsequently  corrected  if  necessary.  Observations  on 
Polaris  for  azimuth  will  show  the  direction  of  the  meridian.  The 

line  is  then  run  out  by  backsighting  and  foresighting.  If  neces- 
sary, the  direction  of  the  meridian  may  be  determined  at  inter- 

mediate points.  When  the  second  point  is  reached,  the  error  in 
the  running  of  the  line  becomes  known,  and  the  random  line  may 

be  set  over  or  re-run  in  the  usual  manner.  If  the  boundary  is 

long,  the  intermediate  points  may  be  found  by  triangulation  in- 
stead of  by  direct  measurement.  In  any  case  triangulation  will 

furnish  a  valuable  check. 
126.  Location  of  Parallel  of  Latitude. 

In  order  to  establish  a  parallel  of  latitude  on  the  ground,  it  is 
necessary  to  assume  a  point  as  nearly  as  may  be  on  the  desired 

parallel.  The  exact  position  of  this  assumed  point  is  then  de- 

termined by  Talcott's  method,  and  the  station  moved,  if  neces- 
sary, to  the  correct  position.  If  the  difference  between  the  ob- 

served and  the  desired  latitude  is  A<^,  the  sea-level  distance 

which  the  station  must  be  moved  is  s'  =  Rm  A^''  •  arc  i". 

At  higher  elevations  s'  should  be  increased  in  proportion  to  the 
distance  from  the  center  of  the  earth  (Equa.  [6]).  If  the  error  in 

position  proves  to  be  large,  it  may  be  advisable  to  make  another 
determination  of  the  latitude,  in  order  to  avoid  the  effect  of 
station  errors.     (See  Art.  83,  p.  109). 

*  The  next  step  is  to  determine  the  azimuth  of  a  reference  mark, 
by  observation  on  Polaris,  and  to  establish  the  direction  of  a 
great  circle  at  right  angles  to  the  meridian  (prime  vertical). 
Points  on  the  parallel  are  then  determined  by  measuring  offsets 
from  the  prime  vertical  as  a  reference  line. 
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In  Fig.  71  we  have,  in  the  triangle  FAB, 

.PA  =  90°  -  <t>, 

A  =  90°, 
and  tan  a  =  tan  AX  cos  (f), 

or  a  =  tan~^  (tan  AX  cos  0). 

173 

Fig.  71. 

Expanding  o-  by  the  formula  for  tan  ̂   x,  p.  330,  and  also 
tan  AX  in  terms  of  AX  by  the  formula  for  tan  x,  p.  330,  we  have 

0-  =  AX  cos  0  +  ̂   (AX  cos  0)3  tan^  0, 
or  s  =  (tN  =  iVAX"  •  cos  0  •  arc  i" 

+  I  N  (AX"  cos  0  .  arc  i")^  tan^  0,  [74] 

which  gives  the  distance  AB  corresponding  to  any  difference  in 
longitude  AX. 

If  in  Equa.  [64]  we  place  a  =  90°, 
s"^  tan  (f> 

A0"  = 2NRmSiTCl" 
The  offset  P  from  the  prime  vertical  (tangent)  for  any  distance 

s  from  the  initial  point  is s^  tan  0 

P  =  -A0"i?„arci"  = 2N [75] 
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Since  P  varies  as  s^,  the  offsets  for  equidistant  intervals  along 
the  line  may  be  readily  calculated.  The  direction  of  the  pole 
from  any  point  {x)  on  ̂ J5  is  given  by 

PxA  =  96°  +  Aa, 

in  which  it  is  sufficiently  accurate  to  take 

—  Aa  =  AX  sin  ̂ m-  [76] 

Since  the  numerical  value  of  A  a  increases  directly  as  AX,  it  will 
be  sufficient  to  take  the  increments  of  Aa  as  proportional  to  s. 

If  the  arc  of  the  parallel  is  a  long  one,  it  is  advisable  to  break 

it  into  sections,  and  to  establish  a  new  point  at  the  beginning  of 
each  section  by  direct  latitude  observation. 

(See  United  States  Northern  Boundary  Survey,  Washington, 
1878.) 

127.  Location  of  Arcs  of  Great  Circles. 

The  general  method  of  laying  out  arcs  not  coincident  with  the 
meridian  is  that  of  determining  astronomically  the  latitudes  and 
longitudes  of  the  terminal  points,  and  then  running  a  random 
line  between  them.  The  direction  and  distance  between  the 

terminals  may  be  found  by  Formulae  [70]  to  [73]  for  the  inverse 
solution  of  the  geodetic  problem.  The  azimuth  is  determined 
by  observation  at  intermediate  points.  The  error  of  the  random 
line  is  corrected  in  the  usual  way.  For  long  arcs  triangulation 
would  be  substituted  for  direct  measurement. 

(See  Appendix  3,  Coast  Survey  Report  for  1900,  "The  Oblique 
Boundary  Line  between  California  and  Nevada.") 

128.  Plane  Coordinate  Systems. 

When  all  the  points  to  be  located  in  a  survey  are  comprised 
within  a  relatively  small  area,  such  as  a  city  or  a  metropolitan 
district,  the  calculations  are  greatly  simplified  by  the  use  of  plane 
coordinates.  If  there  are  reliable  triangulation  points  already 
established  within  the  area,  these  will  naturally  be  used  as  a  basis 
for  the  new  survey,  or  at  any  rate  to  check  the  new  triangulation. 

In  establishing  a  system  of  plane  coordinates  it  is  necessary  to 
decide  first  upon  the  positions  of  the  coordinate  axes.     These 
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will  naturally  be  a  meridian  and  a  great  circle  at  right  angles  to 

it;  or,  more  properly  speaking,  they  will  be  straight  lines  tangent 

to  these  two  circles  at  their  point  of  intersection,  all  points  being 

supposed  to  lie  in  the  plane  defined  by  these  two  lines.  The 

origin  of  the  system  must  be  defined  in  terms  of  the  coordinates 

of  some  specified  point  of  the  survey  (geodetic  datum,  p.  158). 

Unless  this  is  done,  the  origin  will  not  be  the  same  when  derived 

from  different  points,  and  ambiguity  will  exist  regarding  the  true 

position  of  the  origin.  The  origin  may  be  taken  as  coincident 

with  the  selected  triangulation  point,  as  in  the  case  of  the  survey 

of  Boston,  Massachusetts,  and  Baltimore,  Maryland;  or  it  may 

be  the  intersection  of  a  selected  meridian  and  parallel  as  derived 

from  the  assigned  latitude  and  longitude  of  some  station.  In 

Springfield,  Massachusetts,  for  example,  the  origin  is  the  inter- 

section of  the  42°  04'  parallel  and  the  72°  28'  meridian,  as  de- 
termined by  the  published  latitude  and  longitude  of  the  United 

States  Armory  flagpole.  The  direction  of  the  meridian  must  be 

defined  as  making  a  certain  angle  with  a  specified  line  of  the  sur- 
vey, preferably  one  which  passes  through  the  fundamental  point. 

The  point  at  which  the  plane  is  tangent  to  the  spheroid  must 

not  be  confused  with  the  (o,  o)  point  of  the  system.  The  former 

should  be  within  the  area  surveyed,  preferably  at  its  center,  in 

order  to  avoid  large  spherical  errors.  The  latter  may  be  taken 

at  any  convenient  distance  outside  the  area  by  assigning  to  the 

tangent  point  large  values  of  x  and  y,  in  order  to  avoid  negative 

values  in  the  coordinates  of  the  survey  points.  The  tangent 

point  is  on  the  sphere  as  well  as  on  the  plane;  the  (o,  o)  point  is 

not  necessarily  on  the  sphere. 

129.  Calculation  of  Plane  Coordinates  from  Latitude  and 

Longitude. 

In  calculating  the  plane  coordinates  of  a  point,  we  may  apply 

Formulae  [70]  to  [73]  for  the  inverse  solution  of  the  geodetic 

problem,  one  of  the  points  being  the  origin  (tangent  point)  whose 

coordinates  are  ̂   and  X,  and  the  other  the  triangulation  point  the 

coordinates  of  which  are  <^'  and  X'.     The  x  and  y  there  given  are 
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the  plane  coordinates  desired.  If  the  coordinates  of  many  points 
are  to  be  transformed,  it  will  prove  to  be  more  convenient  to 

use  specially  prepared  auxiliary  tables  and  to  modify  the  calcula- 
tions as  follows. 

In  Fig.  72  P  is  the  triangulation  point  whose  latitude  and 

longitude  are  known,  and  whose  coordinates  x  and  y  with  refer- 
ence to  the  origin  O  are  desired.     For  such  distances  as  are  likely 

Fig.  72. 

to  occur  in  a  plane  system  it  may  be  assumed  that  PE  =  PD; 
that  is,  X  equals  the  length  of  the  arc  of  the  parallel  PD.  The 

ordinate  y  =  PC  may  be  taken  as  PA  (the  difference  in  latitude) 

plus  BC  *  (the  offset  from  great  circle  to  parallel).  From  For- 
mula [70], 

x  =  PD  =  AX"  . 

cos<^ 

A' 

If  X  is  to  be  expressed  in  feet, 

COS(f)' 

A' 

AV X  3. 2808 J. 

[77] 

[781 (See  Table  A.) 

*  If  P  is  south  of  the  origin,  the  offset  must  be  subtracted. 
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TABLE  A.     VALUES  OF   LOG  ̂ ^^'  +  0.515  9842^ 
Distance  west  of  origin  in  feet  =  x  =  AX"  X  H 

Lat.  <t>'- 
LogH. 

Lat.  4)'. 
Log//. 

P.  P. 

570 
572 

574 

576 

19 

42  ID 
1.8768536 

42  20 

1.87s  7103 I 

19 

19 

19 

2 

38 

38 

38 

38 

30 
7966 

30 

6530 
3 

57 57 57 

58 

4 

76 

76 

77 

77 
II 

7396 

21 

,  5957 
5 

95 

95 

96 96 

30 

6825 

30 

5383 

6 

114 114 

"5 

115 

7 

133 134 
134 134 

12 

6255 

22 4809 8 152 

153 
153 

154 

9 171 172 172 

173 

30 

5684 

30 

4235 

10 190 191 191 192 
13 

5114 

23 

3661 

II 

209 

210 210 
211 

12 
228 

229 

230 
230 

30 

4543 

30 

3086 

13 

247 

248 

249 

250 

14 

266 

267 

268 

269 

14 

3971 

24 

2512 

15 

285 

286 

287 

288 

30 
3400 

30 

1937 

16 

304 
305 

306 

307 

17 

323 
324 

325 

326 

IS 

2828 

25 

1362 

18 

342 

343 
344 

346 

19 

361 362 

364 

365 

30 

2256 

30 

0787 

20 

380 
381 

383 
384 

16 

1684 
26 

I .875  0212 
21 399 

400 

402 

403 

22 

418 

419 

421 
422 

30 

1112 

30 

1.8749636 

23 

437 

439 

440 

442 

24 

456 
458 

459 

461 

17 

1.876  0541 

27 

9061 

25 

475 
477 

478 

480 

30 

1-875  9968 

30 

8485 

26 494 

496 

497 
499 

27 

513 515 
517 

518 

18 

9396 

28 

7910 

28 

532 

534 

536 
538 

29 

551 

553 
555 

557 

30 

8823 

30 

7334 

30 

570 
572 

574 

576 

19 

8250 

29 

6757 

30 

7677 

30 

6181 

20 1.875  7103 

30 

1.874  5604 

This  is  the  form  adopted  by  the  city  of  Springfield,  Mass.,  tor  its  coordinate  system. 
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TABLE   B.     VALUES  OF  0.515  9842  -  log  B 
tan</» 

Dist.  N.  of  Origin  in  Feet  =  A<^"  X  K  ■\- x^ 

Dist.  S.  of  Origin  in  feet  =  A</)"  X  K  -  x^ 

2N 
tan<^ 

Lat. Log.  K. 
Lat. 

Log.  iC. 
P. 

P.,  Difl 
.  i'  =  12 8. 

42  10 
2.005  2891 

42  20 

2.005  3109 
I 0 22 S 

30 

2988 

30 

3116 

2 0 

23 

5 
II 

2994 

21 

3122 

3 I 

24 

S 

30 

3000 

30 

3129 4 

25 

S 
12 

3006 

22 
313s 

S 26 6 

30 

3013 

30 

3141 

6- 

27 

6 

13 

3019 

23 

3147 7 28 6 

30 

•  3026 

30 

3154 8 2 

29 

6 

14 

3032 

24 

3160 

9 2 

30 

3039 

30 

3167 

10 

2 

15 

304s 

25 

3173 II 2 

30 

3052 

30 

3180 

12 

3 
16 

3058 
26 

3186 

13 

3 

30 

3064 

30 

3193 

14 

3 

17 

3070 

27 

3199 

IS 

3 

30 

3077 

30 

3205 
16 3 

18 
3083 

28 

3211 

17 

4 

30 

3090 

30 

3218 

18 4 

19 

3096 

29 

3224 

19 

4 

30 

3103 

30 

3231 

20 4 
20 2.005  3109 

30 

2.005  3237 
21 4 

The  difference  in  latitude  PA  is  converted  into  feet  by  multi- 

plying A<^"  by  ̂^^^.     (Table  B.) B 

The  offset  BC  (Formula  [75])  =  ̂   X  x\* 2  IS [79] 

The  factor -^^,  in  feet,  may  be  taken  from  Table  C  which 2  N 

was  calculated  by  the  formula 

log^  =  logC  -  log  5  -  log3.28o8i 2  IS 
[80] 

*  For  another  method  of  calculating  this  offset,  see  an  article  entitled  "  A  Method 

of  Transforming  Latitude  and  Longitude  into  Plane  Coordinates,"  by  Sturgis  H. 
Thorndike,  Journal  Boston  Society  Civil  Engineers,  Vol.  3,  No.  7,  September,  1916. 
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TABLE  C.     VALUES  OF  LOG  ̂ ^  (ft.)  =  log  C  -  log  B  -  0.515  9842 

Offset  from  parallel  =  log  L  -\-  2  log  x 

Lat. Log.  L. Lat. Log.L. P. P.  Diff 
I'  =  25.4. 

42  ID 2.33  460 

Of)) 

42  20 

2-33  714 
I 0 

24 

10 

30 

473 

30 

727 2 I 

25 

II 

II 

486 

21 739 3 I 26 II 

30 

499 

30 

752 

4 2 

27 

II 

12 

512 

22 765 5 2 28 12 

30 

52s 

30 

778 

6 3 

29 

12 

13 

537 

23 

790 

7 3 

30 SSo 

30 

803 

8 4 
14 

562 

24 815 

9 4 

30 

S7S 

30 

828 
10 4 

IS 

587 

25 

840 
II S 

30 

600 

30 

853 

12 5 
16 612 26 

865 

13 

6 

30 

625 

30 

878 

14 

6 
17 

638 

27 

892 

IS 

6 

30 

651 

30 

905 16 7 
18 

663 

28 
917 

17 

7 

30 

676 

30 

930 

18 8 
19 

689 

29 

942 

19 

8 

30 702 

30 

955 

20 

8 
20 2.33  714 

30 

2-33967 
21 

22 
9 
9 

23 

10 

Example.  As  an  illustration  of  how  this  method  would  be  applied,  let  us  sup- 
pose that  it  is  desired  to  compute  the  plane  coordinates  of  A  Powderhorn  in  a  system 

whose  origin  is  the  dome  of  the  State  House,  Boston,  Massachusetts.  We  first 

compute  A(^"  and  AX"  and  then  apply  formulas  [78],  [79]  and  [80]  as  shown. 

Powderhorn      Lat.  42°  24'  04".683  Long.  71°  01'  52".oo6 
State  House  42    21  29  .596  71   03  51  .040 

2'  35"-o87 

A0"  =  i55".o87 

log:j:2  =  7.90183  logA<^"     =  2.190  5754 
logL  =  2.33752 

log  =  0.23935 

Offset  =  1.7352  ft. 

log  K  =  2.005  3129 

log  =  4.195 

15699.59  ft. 

1.74 

1.59  -034 AX"  =  ii9".o34 

log  AX"  =  2.075  6710 
logfl^  =  1-875  2422 

log  a;  =  3.9509132 

X  =  8931.27  ft.  East  of 
State  House. 

y  =  15701.33  ft.   North  of  State  House 

If  it  is  preferred  to  make  the  conversion  from  AX  to  ic  always 

on  the  same  parallel  of  latitude,  that  of  the  origin,  a  table  may  be 

calculated,  giving  the  length  of  each  minute  (i'  to  10')  and  each 
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second  (i"  to  60")  of  arc  on  this  parallel;  the  difference  in  longi- 
tude may  be  taken  out,  by  parts,  from  this  table.  If  this  is  done, 

however,  it  is  necessary  to  make  allowance  for  the  convergence 

of  the  meridians  between  the  two  parallels  by  solving  for  the  dis- 

tance AB  =  ysind  (Fig.  72).  The  convergence  6  =  AX''  sin  </>„ 
and  its  sine  may  be  tabulated  for  different  values  of  AX  and  <f)m. 

If  the  triangulation  point  is  north  of  the  origin,  .45  is  to  be  sub- 
tracted; if  south,  it  is  to  be  added. 

130.   Errors  of  a  Plane  System. 

,    In  order  to  investigate  the  errors  of  a  plane  coordinate  system 
like  the  preceding,  let  us  assume  that  a  line  starts  from  the  origin 
o.  Fig.  73,  in  an  azimuth  a,  and  follows  the  surface  of  a  sphere  of 

radius  Vr^N  (for  latitude  0)  for  a  distance  5  meters,  to  point  A ; 
and  that  another  Une  0A\  having  the  same  azimuth  and  length, 
lies  in  the  plane  which  is  tangent  to  the  sphere  at  o.  The  point 

A'  in  the  plane  then  represents  the  point  A  on  the  sphere  as  de- 
termined by  a  direct  measurement  from  the  origin.  The  defects 

of  the  plane  system  as  a  means  of  representing  points  on  a  sphere 

wiU  be  shown  by  the  error  in  reproducing  point  A'  by  following 
different  routes,  such,  for  example,  as  traversing  due  north  and 
then  due  west  on  the  sphere,  or  due  west  and  then  due  north. 

If  a  perpendicular  AF  (an  arc  of  a  great  circle)  be  let  fall  from 



ERRORS  OF   A  PLANE   SYSTEM  l8l 

A  (Fig.  73)  to  the  meridian  through  o,  its  length  will  be  deter- 
mined by 

.a        .    s      . 
sin  —  =  sm  —  •  sin  a, R  K 

where  a  is  the  perpendicular  distance  in  meters  and  R  is  the 

radius  of  the  sphere. 

For  the  corresponding  distance  on  the  plane, 

a  =  s  -  sin  a. 

Distinguishing  the  plane  and  spherical  values  of  a  by  sub- 
scripts, p  and  s,  the  difference  in  length  may  be  found  as  follows : 

dp  —  a,  =  ssina  —  R  sin~^  (sin  a  sin  —  j 

Ti  r  •       / s         s^  \   ,   sin^  a  /s         s^  \^1 

Rs  sin  a  ,     s^     .  s^     .  . 
=  5  -sm^  -  — ^  +  — sma  -  ̂ sin»<,  +  ■  •  • 

=  ri;;sinQ;cos2a  +  •  •  •  . 

6  R^ 
Assuming  that  <f>  =  40°,  a  =  N  45°  W,  and  5  =  20,000  meters 

(about  12  miles),  then  Up  —  as  =  o'".oii6.  If  another  such  line 

were  to  extend  20,000"*,  N  45°  E,  to  B,  the  terminal  points  A  and 
B  would  then  be  ©'".0232  farther  apart  if  calculated  on  a  plane 

than  if  calculated  on  the  sphere.* 
If  the  survey  proceeds  from  o  northward  to  the  point  F,  where 

the  great  circle  from  A,  perpendicular  to  the  meridian,  inter- 
sects that  meridian,  and  then  westward  along  this  great  circle  to 

A,  the  point  A  would  be  reached  without  error,  if  the  measure- 
ments were  perfect.  The  point  computed  on  the  plane  would 

not  agree,  however,  with  A'  as  already  established.  The  excess 
of  the  spherical  distance  bg,  along  the  meridian  to  the  foot  of  the 

perpendicular  F,  over  the  plane  distance  bp  is  found  as  follows: 

*  This  does  not  refer  to  the  chord-distance  AB,  but  to  the  distance  on  the 
spherical  surface. 
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In  the  spherical  right  triangle, 

,      b       ̂       s tan  —  =  tan  —  cos  a. 
K  K 

Then 

b,  —  bp  =  Rta.n  Mtan  — cosaj- 
^cosa 

_  s^  cos  a  sin^  a 

Assuming  the  same  data  as  before,  we  find  that  in  order  to  reach 

A,  on  the  sphere,  we  must  run  N  14142. 15886  meters  and  then 

W  14142. 12400  meters.  Since  in  this  case  5  sin  a  =  5  cos  a  = 

14142. 13563™,  such  a  traverse,  when  computed  on  the  plane, 

gives  a  point  o'".o2323  N  and  0^.01163  E  of  point  A\  A  similar 
traverse  running  west  to  point  G  (Fig.  73)  and  then  north  to  A 

would  give  a  point  o^'.ci  163  S  and  o'".o2323  W  of  point  A'.  The 
relative  positions  are  shown  (actual  size)  in  Fig.  74. 

A'^  From  O  uocth. 
then  west 

Prom  O  west 
then  nortli 

Fig.  74. 
Fig.  75. 

The  maximum  discrepancy  in  the  traverse  is  then  about  o"'.o5, 
or  about  two  inches.  This  would  appear  as  an  error  of  closure 
of  the  traverse  OF  AGO  even  if  there  were  no  error  whatsoever  in 

the  measurements  themselves. 

The  difference  in  length  between  an  arc  of  the  parallel  and  an 
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arc  of  the  great  circle  is  found  as  follows:  In  Fig,  75,  ̂   AB  = 
Ax  0 

r  sin  —  =  i?  sin  -.     Replacing  the  sines  by  their  series  in  terms  of 2  2 

the  arcs,  r  {   — )  =  R[   -).     The   difference  between \  2        48  /  \2      48/ 

r  AX,  the  arc  of  the  parallel,  and  Rd,  the  arc  of  the  great  circle,  is 

r^\-R^  =  r—  -R'- 
24  24 

„     -      AX^  AX^  cos^  (f>  .  . 
=  R cos (t>   R  •  —   (approx.) 

24  24 

since  0  =  AX  cos  <^,  nearly. 

Therefore         rAX  -  Rd  =  2V  R  cos  <t>  AX^  (i  -  cos^  0) 

=  2V  R  (^>^")'  •  arc3 1"  cos  (j>  sin^  <t>. 
In  order  to  compare  this  with  the  previous  examples,  we  must 

put  Ax"  =  ii92".4,  which  corresponds  to  the  distance  between 
A  and  B.  The  error  r  A\  —  Rd  is  found  to  be  o"',oi86  for  the 

total  arc,  or  o'".oo93  for  the  half  arc.  The  difference  between 
the  length  of  the  parallel  and  the  x  coordinate  is  therefore 

o'",oii6  —  o'",oo93  =  o'",oo23. 
These  results  indicate  that  a  plane  system  may  be  extended 

over  an  area  twelve  miles  in  radius  without  involving  errors  of 

computation  as  great  as  the  errors  of  measurement,  and  also  that 

the  formulae  given  may  be  used  whenever  it  is  safe  to  use  plane 
coordinates. 

131.  Adjusting  Traverses  to  Triangulation. 

Whenever  a  traverse  is  to  be  run  from  one  triangulation  point 

to  another,  or  if  the  circuit  is  to  return  to  the  original  triangula- 
tion point,  some  method  must  be  provided  to  allow  for  the  effect 

of  convergence  of  the  meridians.  The  most  obvious  method  is 

to  refer  all  bearings  in  the  traverse  to  the  direction  of  the  initial 

meridian,  taking  no  account  of  true  bearings  at  any  other  point 

of  the  survey.  This  method  is  subject  to  very  small  errors,  far 

within  the  limit  of  accuracy  of  the  field  measurements,  unless  the 

area  is  much  greater  than  that  ordinarily  covered  by  a  traverse. 
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PROBLEMS 

Problem  i.  Calculate  the  latitude  and  longitude  of  point  A ,  Problem  3,  Chapter 

VI,  from  both  lines,  and  the  back  azimuths  AB  and  AC. 

Problem  2.  Calculate  the  latitude  and  longitude  of  point  E,  Problem  4,  Chapter 
VI,  and  the  back  azimuths  EL  and  EN. 

Problem  3.     Calculate  the  poiition  of  Sand  Hill  in  Problem  5,  Chapter  VI. 

Problem  4.  What  will  be  the  error  of  closure  of  a  survey  which  follows  the  cir- 

cvmiference  of  a  circle  whose  radius  is  20,000  meters  (on  the  earth's  surface)  if  the 
survey  is  calculated  as  though  it  were  on  a  plane,  the  latitude  of  the  center  being 

40°  N.  and  the  measurements  being  exact? 



CHAPTER  VIII 

FIGURE  OF  THE  EARTH 

132.  Figure  of  the  Earth. 

The  term  ''figure  of  the  earth  "  may  have  various  interpreta- 
tions, according  to  the  sense  in  which  it  is  employed  and  the  de- 

gree of  precision  with  which  we  intend  to  define  the  earth's 
figure.  When  we  say  that  the  earth  is  spherical,  we  mean  that 
the  sphere  is  a  rough  approximation  to  the  true  figure,  sufficiently 
close  for  many  purposes.  We  adopt  the  sphere  to  represent  this 
figure  because  it  is  a  simple  surface  to  deal  with  mathematically. 
When  a  closer  approximation  is  required,  we  employ  the  spheroid, 
or  elHpsoid  of  revolution.  This  figure  is  so  near  the  truth  that  no 
closer  approximation  has  ever  been  needed  in  practical  geodetic 
operations,  although  an  ellipsoid  (three  unequal  axes)  or  an 
ovaloid  (southern  hemisphere  the  larger)  may  be  nearer  the 

truth.  All  the  surfaces  mentioned  are  regular  mathematical  sur- 
faces, substituted  for  the  true  surface  on  account  of  their  sim- 

pUcity. 
In  defining  the  true  figure  it  is  necessary  to  distinguish  be- 

tween the  topographical  surface  and  that  surface  to  which  the 
waters  of  the  earth  tend  to  conform  because  they  are  free  to 
adjust  themselves  perfectly  to  the  forces  acting  upon  them.  It 
is  this  latter  surface  with  which  we  are  chiefly  concerned  in 

geodesy;  the  land  surface  is  not  referred  to  except  in  such  ques- 
tions as  the  effect  of  topography  upon  the  direction  and  in- 

tensity of  gravity.  The  true  figure,  calleii  the  geoid,  is  defined 
as  a  surface  which  is  ever3rwhere  normal  to  the  force  of  gravity, 
that  is,  an  equipotenttal  surface;  and  of  all  the  possible  surfaces 
of  this  class  it  is  that  particular  one  which  coincides  with  the 
mean  surface  of  the  oceans  of  the  earth.    Under  the  continents 

i8s 
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it  is  the  surface  to  which  the  waters  of  the  ocean  would  tend  to 

conform  if  allowed  to  flow  into  very  narrow  and  shallow  canals 

cut  through  the  land.  It  is  necessary  to  suppose  these  canals 

narrow  and  shallow  in  order  that  the  quantity  of  water  removed 

may  not  modify  the  figure  over  the  ocean  areas. 

Some  idea  of  the  relation  of  the  spheroid,  the  geoid,  and  topo- 
graphical surface  may  be  gained  by  an  inspection  of  Fig.  76.  It 

will  be  seen  that  the  geoidal  surface  coincides  with  the  surface 

of  the  ocean,  and  that  it  intersects  the  spheroid  at  some  distance 
out  from  the  shore  line.     The  inclination  of  the  normal  to  the 

Fig.  76. 

plumb  line  (station  error)  shows  the  angle  between  the  two  sur- 
faces at  this  point. 

The  surface  of  the  geoid  may  be  represented  conveniently  by 

means  of  contour  lines  referred  to  the  spheroid  as  a  datum  sur- 
face. In  Fig.  77,  which  shows  contours  of  the  geoid  within  the 

limits  of  the  United  States  proper,  that  portion  of  the  contours 

shown  in  full  lines  is  taken  from  a  map  published  by  the  Coast 

and  Geodetic  Survey  in  "Figure  of  the  Earth  and  Isostasy  " 
(1909);  the  remaining  portions  (dotted)  were  sketched  in  by 

eye,  following  in  a  general  way  the  topography  of  the  continent. 

Such  a  map  conveys  no  real  information  about  the  elevations 

of  the  geoid  except  along  the  full  lines,  but  is  given  simply  to 

show  how  the  contours  would  be  used  in  representing  the  geoid. 

When  we  speak  of  the  spheroid  as  the  "figure  of  the  earth  "  we 
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mean  that  particular  spheroid  which  best  represents  the  earth  as 

a  whole,  or  which  most  closely  fits  some  specified  area.  The 

dimensions  of  such  a  spheroid  are  not  to  be  regarded  as  fixed, 

but  are  subject  to  revision  with  each  accession  of  new  data.  Such 

a  spheroid  necessarily  depends  upon  a  large  amount  of  data,  and 

the  calculations  for  fixing  its  dimensions  are  long  and  compli- 
cated, involving  the  adjustment  of  many  observations  by  the 

method  of  least  squares. 
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Fig.  77.     Contours  of  the  Geoid. 

The  principal  methods  of  determining  the  spheroid  are  (i)  by 

the  measurement  of  arcs,  which  may  be  portions  of  meridians, 

of  parallels,  or  of  great  circles;  (2)  by  means  of  areas  containing 

several  astronomical  stations  rigidly  connected  by  triangulation ; 

and  (3)  by  observations  of  the  force  of  gravity. 

133.  Dimensions  of  the  Spheroid  from  Two  Arcs. 

The  simplest  method  by  which  the  dimensions  of  the  spheroid 

can  be  determined  is  by  the  measurement  of  two  meridian  arcs. 

The  length  of  each  arc  and  the  latitudes  of  the  terminal  points  of 

each  must  be  measured.  If  the  earth  were  a  perfect  spheroid, 

and  if  there  were  no  errors  of  measurement,  the  two  arcs  would 

determine  exactly  the  elements  of  the  spheroid. 
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In  the  equation  of  the  ellipse  there  are  two  constants  to  be 
determined,  and  it  will  be  shown  that  the  determination  of  the 
curvature  of  the  meridian  ellipse  at  two  points  will  enable  us  to 
compute  these  constants  and  consequently  all  the  other  elements 
of  the  elKpse.     In  Fig.  78,  suppose  that  the  lengths  of  the  two 
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Fig.  78. 

meridian  arcs  have  been  measured  by  triangulation  and  that 

their  lengths  are  s  and  s',  and  that  the  differences  of  the  latitudes 
of  their  terminals  are  A0  and  A^',  respectively.  The  radii  of 
curvature  of  the  ellipse  at  the  middle  points  of  the  arcs  are 

Rm    = 

and 

(i  -  e^sm^tfy)^ 

Km    —     i"i 

(i  -eH\n^<i>'y 

in  which  <^  and  <i>'  refer  to  the  middle  points  of  the  arcs  and  a 
and  e  are  unknown.  If  the  two  arcs  are  regarded  as  arcs  of 
circles  whose  radii  are  to  be  found,  then 

Rm  = 
A0  arc  1" 

and    RJ  = 

A0'  arc  i" 
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are  the  two  radii  of  curvature,  A(/>  being  in  seconds.  The 

shorter  the  arcs,  the  less  the  error  involved  in  assuming  that 

they  are  circular. 

Equating  the  two  values  of  R^  and  Rj,  we  have 

5  a  (i  —  e^) 

A</)arri''      {1  -  eHin^ (l>)^ 

(a) 

and  — ^  =      ̂ ^^-^'^    ,•  (6) A</»'arci"      (i-e^sin^  </.')* 

Dividing  (a)  by  (6)  and  solving  for  e^, 

-(7 

e'=   ':^^    [8.] 
sm"  -        ■   '  A    , A</)> 

Having  found  e^  from  Equa.  [81],  the  equatorial  radius  a  may 

be  computed  by  substituting  the  value  of  e^  in  either  {a)  or  (6). 
The  value  of  b  may  then  be  found  from  the  relation 

b^   =  fl2  (i    _  ^2)  (c) 

The  compression  /  is  given  by 

f  =  '^^-  [S3l a 

The  length  of  a  quadrant  of  the  meridian  may  be  found  by 

applying  Equa.  [54],  Chapter  V. 
In  this  method  of  determining  the  elements  of  the  spheroid  it 

should  be  observed  that  there  are  just  enough  measurements  to 

enable  us  to  solve  the  equations,  and  no  more.  All  errors  of 

measurement  enter  the  result  directly;  we  should  not,  therefore, 

expect  to  derive  very  accurate  values  from  two  arcs. 

As  an  illustration  of  the  preceding  method  let  us  take  the 

Peruvian  Arc  and  a  portion  of  the  Russian  Arc,  the  data  for 
which  are  as  follows: 
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PERUVIAN  ARC 

Station. Astr.  lat. 
Dist.  in  meters 

between  the  parallels 
of  latitude. 

Tarqui   

o         /               /r 

S  3  04  32.068      J No  02  31.387      ) 
344,740.5 

Cotchesqui   

RUSSIAN  ARC  (Northern  End) 

Tornea   N  6s  49  44-57      I 
N  70  40'  II .23     ) 

539.841.7 
Fuglenaes   

Substituting  in  Formulae  81,  (a)  and  (c),  the  resulting  values 
are 

Fig.  79. 

e^  =  0.0065473, 

«  =  6,377,352  m, 

b  =  6,356,440  m. 

134.   Oblique  Arcs. 
If  an  arc  (AB,  Fig.  79)  is  inclined  to 

the  meridian  at  a  small  angle,  it  may  be 
utilized  to  determine  the  curvature  of  the 

meridian  as  follows:  Referring  to  Equa. 

(n),  Chapter  VII,  it  is  seen  that  the  dif- 
ference in  latitude  of  the  terminal  points 

of  the  line  is  given  by  the  series  for  A</»". 
Hence  the  length  of  the  meridian  arc  is 

given  by  A^".    Rm  •  arc  1",  and 

A0"  •  Rm  '  arc  i"  =  —5  cos  a 2N 
5^  sin^  a  tan  0 

+  — ^5'sin^acosa  (i  +  3  tan2</>).      [82] 

Each  Une  of  a  chain  of  triangles  may  be  projected  onto  the  meri- 

dian, and  its  length  found  by  this  formula.  The  length  and  dif- 
ference in  latitude  of  the  end  points  are  thus  found,  and  the 

projection  treated  as  though  it  were  a  measured  meridian  arc. 
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The  sum  of  all  these  short  arcs  may  then  be  treated  as.  a  single 

arc  to  be  combined  with  another  similar  arc  in  the  computation 
of  a  and  e. 

135.  Figure  of  the  Earth  from  Several  Arcs. 
When  several  arcs  are  to  be  used  to  determine  the  elements  of 

the  spheroid,  there  are  more  data  than  are  necessary  for  the 

direct  solution  as  given  in  Art.  133.  The  arcs  usually  consist  of 

several  sections;  that  is,  the  latitudes  of  several  stations  along 
the  same  meridian  are  observed  and  the  distances  between  them 

are  determined  by  the  triangulation.  The  problem  is  one  of 

combining  all  these  measurements  by  the  method  of  least  squares 

in  order  to  obtain  the  most  probable  values  of  the  elements. 

Only  the  outline  of  the  method  can  be  given  here. 

From  Equa.  [49]  we  have  for  the  length  of  a  meridian  arc 

s  =  ̂.<i>  -Rm  '  arc  i", 
which  is  sufficiently  accurate  for  short  arcs.  For  long  arcs  a 

more  accurate  expression  is  necessary.  Suppose  that  an  arc 
consists  of  several  sections,  the  latitude  of  the  initial  point  being 

01,  the  second  ̂ 2,  etc.,  and  that  the  meridian  distances  between 

the  stations  are  s,  Si,  etc.     From  the  first  two  latitudes 

S  f     s. 

<h  —  <l>i  =  ̂   7/'  W Km  arc  I 

,  .  ,  I        (i  -  e^sin^i^)^  .  .. 
in  which  —  =  ̂   ^-  (/) 

Rm  a{i  -  e^) 

Instead  of  finding  a  and  e^  directly,  it  is  more  convenient  to 
assume  approximate  values  of  these  quantities  and  to  compute 

the  most  probable  corrections.     Let  us  assume  the  equations 

a  =  ao  -\-  Sa 

and  e^  =  e^  +  h^. 

.  Let  Ro  be  the  value  of  Rm  corresponding  to  Co  and  Qo.  Ex- 

panding (/)  by  Taylor's  theorem. 

I         I    .      \rJ   .     .      \RJ 

Rm      Ro         da  de^ 
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Evaluating  the  two  differential  coefficients, 

^\rJ          (i-e2sin2  0)*      I 

da                 a^  (i  -  e^)          a"" 

neglecting  the  e^  terms,  and 

\r)  a(i-e^)'i'(i-  g^sin^«^)^sin2  0  -  (i  -  e" sin' <l>)i . a 
de"  a"  (i  -  e") 

T 

=  -  (i  —  I  sin^^),  neglecting  e^  terms. 

Substituting  these  values  in  {g), 

K       Ko       do  do 

Hence  {e)  becomes 

The  errors  in  the  measured  latitudes  are  so  large  in  comparison 

with  the  errors  in  the  measured  arcs  that  the  lengths  are  con- 

sidered exact  and  the  observed  latitudes  are  given  corrections 

Vi,  V2,  etc.     Equa.  (h)  then  becomes <h 

+  2)2  -  01  -  z'l  =  ~^{-w  -  "1  +  (i  -  I  sin2  0)  — )•  .  .  .     (i) 
arc  I    \Ro      a^  ^        V  aol 

In  the  small  terms,  containing  5a  and  he',  the  e^  terms  were 
omitted;  that  is,  ̂  was  placed  equal  to  zero.    This  makes  Rm  =  a 

s       . 
and  02  —  </>i  =   77  in  these  terms. a  arc  i 

Substituting  in  {i), 

z^-^i=-(02-0i)  +  -^   —J,   1   77+(i-f  sm2  0)- 
i?o  arc  I        ao^arci"  floarci'' 

•^^^.ga+(i-fsinV)(«fe-0i)'gg^+^    '     „-(ch-<t>i)/j) 0-0  J\.o  arc  I 
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If  we  place X  =  8a, 

y  =  de^, 
substituting  in  (/),  we  have 

aix  +  &!>'  +  /i  =  %  -  vi,  {k) 

1  02    ~   01 where  ai  =   > 

do 

h  =  (02  -0i)  (i  -  |sin2  0), 

k  =  -^   Tf  ~  (^^  ~  *^i)- Ro arc  I 

It  is  evident  that  an  equation  of  this  form  (k)  may  be  written 

for  each  section  of  each  arc.  There  will  be  more  equations  than 

there  are  unknown  quantities  to  be  found.  From  these  equations 

we  may  form  a  set  of  "normal"  equations  (Art.  201,  p.  293), 
equal  in  number  to  the  number  of  unknown  quantities,  that  is, , 

equal  to  the  number  of  arcs  plus  two.  The  simultaneous  solu- 

tion of  the  normal  equations  gives  the  corrections  8a  and  5e^,  and 
also  the  correction  to  the  initial  latitude  of  each  arc. 

136.  Principal  Determinations  of  the  Spheroid.* 
The  spheroids  which  have  been  most  extensively  used  are  those 

of  Bessel  (1841)  and  Clarke  (1866).  Bessel's  determination  was 
based  on  the  following  arcs;  the  Peruvian,  French,  English, 

Hannoverian,  Danish,  Prussian,  Russian,  Swedish,  and  two 

Indian  arcs.  The  resulting  elements  of  the  spheroid  are  generally 

used  in  Europe  at  the  present  time  in  geodetic  surveys.  They 

were  employed  in  the  United  States  up  to  about  1880.  'Clarke's 
spheroid  (1866)  was  calculated  from  the  following  six  arcs,  the 

total  amplitude  being  about  76°  35';  the  French,  English, 
Russian,  South  African,  Indian,  and  the  Peruvian.  The  Clarke 

spheroid  is  larger  and  flatter  than  Bessel's.  It  was  adopted  by 
the  Coast  and  Geodetic  Survey  about  1880,  after  it  became  evi- 

dent that  the  surface  in  this  part  of  the  globe  has  a  flatter  curva- 

*  For  an  account  of  the  different  arc  measurements  see  A  History  of  the  Determi- 
nation of  the  Figure  of  the  Earth  from  Arc  Measurements,  by  A.  D.  Butterfield, 

Worcester,  1906. 
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ture  than  that  indicated  by  the  Bessel  spheroid.  The  semiaxes 

of  these  two  spheroids  are  shown  below,  their  dimensions  being 

based  on  Clarke's  value  of  the  meter,  namely,  i"*  =  39.370113 
inches. 

a  (meters). b  (meters). 

Bessel  (1841)   
6377397 

6  378  206 

6  356  079 

6  356  584 Clarke  (1866)   

Several  other  spheroids  have  been  calculated  from  different 

groups  of  arcs,  but  have  not  been  extensively  used  for  geodetic 

purposes. 
137.   Geodetic  Datum.  - 

The  question  of  where  to  place  the  spheroid  with  respect  to  the 

station  points  of  a  survey,  and  the  question  whether  a  certain 

spheroid  properly  represents  the  curvature  of  the  area  being 

surveyed,  are  determined  by  a  comparison  of  the  geodetic  and 

astronomical  positions  of  the  survey  points.  As  the  survey 

progresses  the  geodetic  latitudes  and  longitudes  will  be  calculated 

on  the  surface  of  the  adopted  spheroid,  starting  from  some 

assumed  position  of  one  of  the  triangulation  stations.  At  the 

same  time  the  positions  of  many  of  the  stations  will  be  deter- 

mined astronomically.  The  differences  in  the  latitudes,  as- 

tronomical minus  geodetic  (A  —  G),  the  differences  in  the  longi- 
tudes, and  the  differences  in  the  azimuths  are  computed  for  every 

station  where  the  astronomical  observations  have  been  made. 

A  study  of  these  differences  and  their  manner  of  distribution  will 

show  what  corrections  to  the  assumed  position  of  the  initial 

point  will  reduce  the  algebraic  sum  of  the  quantities  {A  —  G)  to 
a  minimum.  If  these  differences  were  due  wholly  to  errors  in 

the  assumed  latitude  and  longitude  of  the  initial  point,  it  would 

be  possible  to  reduce  '^{A  —  G)  to  zero,  but  a  part  of  this  differ- 
ence is  due  to  local  deflection  of  the  vertical,  that  is,  to  the  dif- 

ference in  slope  of  the  geoidal  and  spheroidal  surfaces.     For  this 
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reason  the  most  that  can  be  expected  is  to  place  the  spheroid  so 

as  to  reduce  "^  {A  —  G)  to  a  small  quantity.  The  remaining 
values  of  {A  —  G)  at  the  different  stations  after  a  recomputation 
has  been  made,  serve  to  indicate  the  slope  of  the  geoid  with 

reference  to  the  spheroid. 

If  the  reference  spheroid  adopted  has  too  great  a  curvature, 

the  computed  latitudes  will  increase  or  decrease  faster  than  the 

astronomical  latitudes  as  the  survey  proceeds  north  or  south 

from  the  initial  point  (Fig.  80).  This  was  observed  as  the  sur- 
veys in  this  country  were  gradually  extended  on  the  Bessel 

Fig.  80. 

spheroid.  If  we  consider  an  area  instead  of  a  meridian  arc,  then 

we  see  that  if  all  the  astronomical  zeniths  are  swung  inward  with 

reference  to  the  geodetic  zeniths,  the  spheroid  that  we  are  using 

for  the  calculations  must  have  too  great  a  curvature  for  the  area 

in  question.  If  the  observed  latitudes  are  sometimes  too  great, 

sometimes  too  small,  as  we  proceed  along  a  meridian,  this  simply 

shows  that  the  verticals  are  deflected  locally,  and  that  the' 
average  curvature  of  the  surface  is  nearly  that  of  the  spheroid. 

138.  Determination  of  the  Geoid. 

The  form  of  the  geoid  is  determined  by  observing  the  local 

variations  from  the  spheroid  as  a  surface  of  reference.  These 

deviations  may  be  determined  either  from  the  station  error 
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(difiference  between  astronomical  and  observed  position)  or  from 

the  observed  variation  in  the  force  of  gravity. 

The  station  error  at  any  point,  or  local  deflection  of  the  vertical, 

is  a  direct  measure  of  the  slope  of  the  surface  of  the  geoid  with 

reference  to  the  spheroid.  The  geodetic  coordinates  of  the  point 

are  computed  with  reference  to  a  line  normal  to  the  spheroid, 
while  the  astronomical  coordinates  are  referred  to  the  actual 

direction  of  the  plumb  line,  which  is  normal  to  the  geoidal 
surface. 

139.  Effect  of  Masses  of  Topography  on  the  Direction  of  the 
Plumb  Line. 

The  deflection  of  the  plumb  line  by  masses  of  topography  may 

be  computed  by  applying  Newton's  law  of  gravitation,  that  is, 
if  mi  and  nh  be  any  two  masses,  D  the  distance  between  them,  and 

k  a  constant  (to  be  found  by  experi- 
ment), then  the  force  of  attraction 

between  nii  and  nh  is  ^-  or^^statioa 

^'     D^     ' 

that  is,  the  force  of  attraction  is  pro- 
portional to  the  product  of  the  masses 

and  varies  inversely  as  the  square  of 
the  distance  between  them.  The 

efi'ect  of  any  mass,  such  as  a  moun- 
tain, in  deflecting  the  direction  of  fig.  si. 

gravity  at  any  station  may  be  found 

by  combining  the  attraction  of  the  mountam  with  the  attraction 

of  the  earth  regarded  as  a  sphere.  It  may  be  shown  that  the 

attraction  of  a  sphere  at  any  external  point  is  the  same  as  though 
its  mass  were  concentrated  at  its  center.  The  relative  attrac- 

tions of  the  mountain  and  i  he  earth  upon  the  plumb  bob  at  the 

station  are  as  3^  to  —  (Fig.  81),  where  m  is  the  mass  of  the  moun- 

tain,  M  that  of  the  earth,  and  d  the  distance  of  the  mountain 
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from  the  station.     The  angle  D  through  which  the  plumb-line  is 
deflected  is  given  by 

tanZ?  = M(P 

The  earth's  mass  is  |  -kE?  X  5.58  (the  constant  5.58  being  the 
mean  density  of  the  earth).  If  the  mountain  has  a  volume  v  and 

density  5,  and  the  earth's 'radius  be  taken  as  6370  kilometers, 
then 

.        .  Z)"  =  0.00138 1, 

the  dimensions  being  in  meters  and  the  angle  in  seconds. 
N 

[83] 

Fig,  82. 

In  order  to  take  into  account  all  of  the  topography  about  a 
station  when  computing  the  deflection  of  the  plumb  line,  the 
following  method  may  be  employed  (see  Clarke,  Geodesy,  p.  294). 
The  area  surrounding  the  station  is  supposed  to  be  divided  into 

circular  rings  of  any  desired  width,  and  the  rings  cut  into  four- 
sided  compartments  by  radial  lines,  as  in  Fig.  82. 

It  is  desirable  to  separate  the  component  of  the  deflection  in 
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the  meridian  plane  from  that  in  the  prime  vertical.  Let  //  be  the 

height  of  the  upper  surface  of  the  mass  above  station  0;  let  a  and 
r  be  the  azimuth  and  horizontal  distance  to  any  particle  P  in  the 

mass;  and  let  z  be  its  height  above  O  and  5  its  density.  The  mass 

of  the  particle  is  then  b  -  r  '  da  -  dr  '  dz.  The  attraction  of  the 

particle  on  0  is 
,     8  -r  '  da  '  dr  'dz 
^  '  2    I     2  ' 

r  +  z^ k  being  the  gravitation  constant.* 
The  component  of  this  attraction  in  the  plane  of  the  meridian 

is  the  total  attraction  multiplied  by  the  cosine  of  the  angle  be- 

tween PO  and  SO,  which  is     ,  • 

The  total  attraction  of  the  mass  in  the  compartment  in  the 
direction  SO  is 

,    ,  ,  .      ,        .       ̂     r'  C^   r^drdz =  k  '8  (sm a   —  sm ai)    I       I       r 
Jr,     Jo     (^2+22)^ 

=  k  'b  -h  (sm a   —  sin ai)    I      — z 

^2 

+  ̂2
 

u    .    I  r  •      f        '       M       r'  +  Vr'2  +  A2 =  k  '8  'h  ( sm  a  —  sm  ai)  loge   ^^=: • 

ri  +  Vri2  +  /f2 
Unless  h  is  very  large,  the  equation  may  be  written  with 

sufficient  accuracy 

r'
 

A  =  k8h  (sin  a'  —  sin  ai)  loge  -  5 

ri 

that  is,  the  mass  is  considered  to  lie  in  the  plane  of  the  horizon 
of  the  station. 

*  The  gravitation  constant  may  be  defined  as  the  attraction  of  one  unit  mass  on 
another  unit  mass  at  a  unit  distance  away.  In  the  C.  G.  S.  system  this  is 

6673  X  10-11. 
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The  attraction  of  the  earth  at  point  0,  supposing  it  to  be  a 

sphere  of  radius  R  (3960  miles)  and  of  density  A,  is 
A'  =  k 

ttR^ 

K" 

=  k'iTRA. 

The  angle  of  deflection  in  the  plane  of  the  meridian  is  given 

by  the  ratio  of  attractions,  that  is, 

D  = 

h  (sin  a  —  sin  ai)  log*  — 5  T\ 

^  " 

•  R 

8  .  r 
=  I2".44  -r  'h  '  (sin  a   —  sin  ai)  loge  —  ■ A  Ti 

[84] 

The  ratio  of  densities  —  may  be  taken  as   ;*  5  =  2.67  and A  2.09 

A  =  5-576. 

By  extending  the  rings  outward  this  computation  may  be 
carried  as  far  from  the  station  as  desired.  If  a  compartment  is 

very  far  from  the  station,  it  becomes  necessary  to  correct  for  the 
curvature  of  the  earth,  because  the  mass  no  longer  lies  in  the 

horizon  of  the  station,  as  at  first  assumed. 

*  See  Harkness,  The  Solar  Parallax  and  its  Related  Constants,  Washington,  1891. 
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If  the  angles  ai  and  a  are  measured  from  the  prime  vertical 
instead  of  from  the  meridian,  the  formula  gives  the  deflection  in 

a  plane  at  right  angles  to  the  meridian. 
By  the  foregoing  process  we  may  compute  for  any  station 

what  is  called  the  topographic  deflection.  It  shows  what  the 
deflection  of  the  plumb  Une  would  be  if  no  other  forces  acted 
upon  it  than  those  mentioned.  A  comparison  of  the  values  so 
computed  with  the  station  errors  actually  observed  shows  the 
former  to  be  much  larger  than  the  latter;  from  which  we  infer 
that  the  attraction  of  the  surface  topography  cannot  be  the  only 
force  tending  to  deflect  the  plumb  line. 

Laplace  Points. 
As  stated  above,  it  is  customary  to  resolve  the  deflection  of  the 

plumb  line  into  two  components,  one  in  the  plane  of  the  meridian 
and  the  other  in  the  plane  of  the  prime  vertical.  The  meridian 

component  is  found  directly  by  subtracting  the  geodetic  (com- 
puted) latitude  from  the  observed  astronomic  latitude.  The 

prime  vertical  component  must  be  obtained  indirectly  either 

from  the  astronomic  and  geodetic  longitudes  or  from  the  astro- 
nomic and  geodetic  azimuths.  In  terms  of  the  longitudes  this 

component  is 

p.  V.  component  =  (X^  —  \g)  cos  <^q. 
In  terms  of  the  azimuth  it  is 

p.  V.  component  =  —  (a^  —  a©)  cot  (/>(?. 

Both  of  these  relations  may  be  derived  from  the  figure  (82a). 
If  we  equate  the  two  values  for  the  prime  vertical  component 

we  obtain 

(«4  —  «g)  =  —  (Xa  -  Xg)  srn  0(j 

which  is  known  as  the  Laplace  equation.  Triangulation  stations 

at  which  the  astronomic  longitude  and  azimuth  have  been  ob- 
served are  called  Laplace  points. 

The  geodetic  and  astronomic  longitudes  in  the  United  States 

are  subject  to  probable  errors  of  less  than  0^.5.  The  astrononric 
azimuths  are  also  determined  with  about  the  same  accuracy. 
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The  geodetic  azimuths,  however,  as  carried  through  the  tri- 
angulation,  are  subject  to  an  error  about  ten  times  as  great.  The 
triangulation  may  therefore  be  greatly  strengthened  by  correcting 
the  geodetic  azimuths  at  Laplace  points  by  means  of  the  above 

equation. 
The  manner  of  correcting  the  geodetic  azimuth  is  illustrated 

by  the  following  example,  taken  from  Supplementary  Investiga- 
tion in  igog  of  the  Figure  of  the  Earth  and  Isostasy. 

U.  S.  Standard  longitude  of  Parkersburg      \   j     =    88°  oi'  49'^'.oo 
Astronomic  "        _  "  "  =    88    oi    48  .30 

^  —  G  in  longitude  — o".7o 
A  —  Gin  azimuth  =  (—0.70)  (— sin<^j,)  =  +0  .44 

Astronomic  azimuth  Parkersburg  to  Denver        =  143°  16    15  .55 
True  geodetic  azimuth  Parkersburg  to  Denv^er    =143    16    15   .11 
U.  S.  Standard  azimuth  Parkersburg  to  Denver  =  143    16    15  .64 

Correction  to  U.  S.  Standard  azimuth  =  — o"-53 

140.  Isostasy  —  Isostatic  Compensation. 
For  many  years  it  has  been  known  that  the  estimated  and 

observed  values  of  the  station  error  are  not  in  even  approximate 
agreement,  and  it  has  long  been  suspected  that  the  explanation 
would  be  found  in  the  fact  that  the  densities  of  the  material 

immediately  beneath  the  surface  are  unequal,  regions  of  deficient 
density  Ijdng  beneath  mountain  ranges,  and  regions  of  excessive 
density  lying  beneath  low  areas  and  under  the  ocean  bottom.  It 
is  supposed  that  at  some  depth  the  excess  above  the  surface  is 
compensated  by  the  defect  below  the  surface,  and  vice  versa. 
This  condition  is  given  the  name  isostasy.  It  appears  that  the 
theory  was  first  clearly  stated  by  Major  C.  E.  Button  in  1889, 
and  since  that  time  it  has  been  the  subject  of  much  study. 

In  1909  and  1910  there  were  published  by  the  Coast  and  Geodetic 
Survey  the  results  of  a  very  extensive  investigation  conducted  by 
Professor  J.  F.  Hayford,  then  Inspector  of  Geodetic  Work  and 
Chief  of  the  Computing  Division.  The  investigation  was  based 
primarily  upon  the  computation  of  the  topographic  deflections 
at  a  large  number  of  astronomical  stations  in  the  United  States. 
The  best  topographic  maps  available  were  used  for  this  purpose. 
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These  computed  deflections  were  then  compared  with  the  known 
(observed)  deflections  at  these  same  stations  as  found  from  the 
triangulation  and  astronomical  observations.  In  substantially 

all  cases  the  computed  deflection  was  found  to  exceed  the  ob- 
served deflection  by  a  large  amount,  although  the  two  were 

usually  of  the  same  algebraic  sign.  Computations  were  then 
made  to  test  the  theory  that  this  condition  called  isostasy  actually 
exists. 

The  condition  known  as  isostasy  may  be  stated  as  follows :  the 
mass  in  any  prismatic  column  which  has  for  its  base  a  unit  area  of 
the  horizontal  surface  lying  at  the  depth  of  compensation,  for  its 
edges  vertical  lines  (lines  of  gravity),  and  for  its  upper  limit  the 
actual  irregular  surface  of  the  earth  (or  the  sea  surface  if  the  area 
in  question  is  beneath  the  ocean) ,  is  the  same  as  the  mass  in  any 
other  similar  prismatic  column  having  a  unit  area  on  the  same 
surface  for  its  base.  Such  prismatic  columns  have  different 

heights  but  the  same  mass,  and  their  bases  are  at  the  same  depth 

below  the  geoidal  (sea-level)  surface. 
Computations  were  made  assuming  different  depths  of  com- 

pensation, for  the  purpose  of  finding  at  what  depth  the  computed 
deflections  (taking  isostasy  into  account)  most  nearly  agree  with 
the  observed  deflection.  It  was  found  that  the  compensation 

was  most  nearly  complete  (more  than  r^^  complete)  at  a  depth  of 
about  122  kilometers,  or  about  76  miles. 

It  should  be  observed  that,  while  the  densities  in  the  prismatic 
columns  tend  to  compensate,  the  resultant  deflection  of  the  plumb 
line  is  not  zero,  for  the  portions  of  the  column  nearest  the  station 
have  a  much  greater  influence  than  the  distant  portions.  The 
tendency  is  to  throw  all  the  zeniths  outward  from  the  continental 
dome,  assigning  to  the  surface  a  curvature  which  is  greater  than 
it  should  be.  Thus,  if  isostasy  is  not  taken  into  account,  the 
dimensions  of  a  spheroid  computed  from  such  data  will  be  too 
small.  This  investigation  not  only  included  a  determination  of 
the  most  probable  depth  of  compensation,  and  a  substantial 
proof  of  the  validity  of  the  theory  in  so  far  as  it  applies  to  the 
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United  States,  but  also  included  a  determination  of  the  most 

probable  dimensions  of  the  spheroid  for  that  area.  In  this  calcu- 

lation the  area  method  was  employed.  The  dimensions  of  the 

spheroid  resulting  from  this  investigation  are  as  follows: 

,        a  =  6,378,388"^  ±  IS*", 

h  =  6,356,909"^, 

J  =  297.0  ±  0.5. 

The  general  conclusions  in  regard  to  the  existence  of  isostasy 

within  the  limits  of  the  United  States  were  later  confirmed  by  the 

results  of  a  similar  investigation  of  the  compensating  effect  upon 
observed  values  of  the  force  of  gravity  determined  with  the 

pendulum. 
The  results  of  these  investigations  will  be  found  in  the  follow- 

ing publications  of  the  United  States  Coast  Survey: 

John  F.  Hayford,  The  Figure  of  the  Earth  and  Isostasy  from 
Measurements  in  the  United  States,  1909. 

John  F.  Hayford,  Supplementary  Investigations  in  1909  of  the 

Figure  of  the  Earth  and  Isostasy,  1910. 

John  F.  Hayford  and  William  Bowie,  The  Efect  of  Topography 

and  Isostatic  Compensation  upon  the  Intensity  of  Gravity,  Special 

Pubhcation  No.  10,  191 2. 

William  Bowie,  The  Efect  of  Topography  and  Isostatic  Com- 

pensation upon  the  Intensity  of  Gravity,  Special  Publication  No.  12, 

1912. 
William  Bowie,  Investigation  of  Gravity  and  Isostasy,  Special 

Publication  No.  40,  191 7. 

PROBLEMS 

Froblem  i.    Compute  the  dimensions  of  the  spheroid  from  the  following  arcs. 

Name. 
Lat.  of  middle 

point. 

Amplitude. Length  in  feet. 

Peruvian  (Delambre's)   
English   

0       1      II 

S       I    31  00 
N    52  35  45 

0     f     II 

3  07  03.1 

3  57  131 

I  131  057 
I  442. 953 
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Problem  2.     Compute  the  dimensions  of  the  spheroid  from  the  following  arcs. 

Station. Latitude. Distance  in  feet. 

Formentera   38  39  S3  17     I 
51  02  08.41     ) 

S     3  04  32.07     ) 
N    0  02  31.39     ) 

4509  790.84 

I  131  036.3 

Dunkirk   

Tarqui   
Cotchesqui   

Problem  3.  Lake  Superior  arc;  latitudes,  38°43'i7".22  and  48°o7'o6".62; 
dist.,  1,043,974  meters.  Peruvian  arc;  latitudes,  — 3°04'32".o,  +o°02'3i."4; 
dist.,  344,736.8  meters.    Compute  a  and  e^. 



!  CHAPTER  IX 

I  GRAVITY  MEASUREMENTS 

141.  Determination  of  Earth's  Figure  by  Gravity  Observations. 
The  determination  of  the  force  of  gravity  by  means  of  pendu- 

lums affords  a  second  means  ,of  determining  the  earth's  figure, 
which  is  entirely  independent  of  the  arc  method  previously  dis- 

cussed. In  this  method  the  force  of  gravity  is  measured  at  points 
of  known  latitude  and  longitude.  From  the  observed  variation 

of  gravity  with  the  latitude  the  polar  compression  may  be  com- 
puted. Such  measurements,  therefore,  will  give  the  form  but 

not  the  absolute  dimensions  of  the  spheroid. 

In  the  following  discussion  the  term  gravity  (g)  will  be  taken 
to  mean  the  resultant  obtained  by  combining  the  force  of  the 

earth's  attraction  due  to  gravitation  and  the  centrifugal  force 
due  to  the  rotation  of  the  earth. 

142.  Law  of  the  Pendulum. 

The  relation  between  /,  the  length  of  a  simple  pendulum,  P, 
its  period  of  oscillation,  and  g,  the  force  of  gravity  is  given  by  the 
formula 

'  [85] =v^ g 
or,  more  accurately. 

'^^(■*^ 

where  h  is  the  height  through  which  the  point  of  oscillation  falls 
during  a  half  oscillation. 

143.  Relative  and  Absolute  Determinations. 
Determinations  of  gravity  are  of  two  kinds: 
(i)  Absolute  determinations,  in  which  both  P  and  /  are  measured 

and  from  which  g  may  be  calculated;  and  (2)  relative  determina- 
206 
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tions,  in  which  P  is  measured  at  two  stations  and  the  ratio  of  the 
corresponding  values  of  g  at  the  two  places  becomes  known.  If 

the  time  of  oscillation  P  of  the  same  pendulum  has  been  ob- 
served at  two  stations,  then 

Pi' 

gi 
and  ^2  =  ̂ 77 2 

whence  ^  =  ̂ 2'  f^y] 
g2         ̂ 1 

Absolute  determinations  of  g  are  far  more  difficult  than  relative 
determinations,  owing  to  the  practical  difficulties  of  measuring 
the  length  /  with  sufficient  accuracy. 

Relative  determinations  may  be  made  with  very  great  ac- 
curacy, since  the  time  of  oscillation  may  be  measured  in  such  a 

manner  that  the  personal  errors  of  the  observer  have  but  little 
effect  on  the  results. 

Most  of  the  pendulum  observations  for  geodetic  purposes  are 
now  made  by  the  relative  method,  and  all  values  of  g  are  made 
to  depend  upon  some  one  reliable  determination  of  the  absolute 
value.  The  relative  values  of  g  in  such  a  system,  however,  still 
remain  more  accurate  than  the  computed  absolute  values. 

144.  Variation  of  Gravity  with  the  Latitude. 

The  approximate  law  governing  the  variation  of  gravity  with 
the  latitude  may  be  expressed  thus: 

g^=ge(i-\-^^^^^sm^<l>o\  [88] 

in  which  go,  ge,  and  gp  are  values  of  g  at  latitude  <^o,  at  the  equator, 
and  at  the  pole,  respectively.  By  means  of  two  such  equations, 
one  for  g^  observed  near  the  equator  and  one  for  g^  near  the  pole, 
the  two  unknowns  ge  and  gp  may  be  found. 

Equation  [88]  may  be  derived  in  a  simple  manner  if  we  may 
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neglect  variations  in  the  attraction  at  different  parts  of  the  surface.* 
Suppose  the  earth  to  be  a  sphere  of  radius  r,  the  attraction  G 
having  the  same  value  everywhere.  Then  g^,  the  resultant  of 
the  attraction  G  and  the  centrifugal  force  c,  is  found  as  follows: 

At  the  equator  the  centrifugal  force  =  Ce  =  coV.f  At  the  pole 

Cp  =  o. 
Also  at  the  equator 

ge  =  G and  at  the  pole 

gp  =  G 
whence 

gp 

-  ge   =  Ce 
Cp  =  G'f 

Fig.  83. 

In  latitude  (f>  (Fig.  83)  re  =  r  cos  <^  and  c^  =  wV  cos  <f>  =  Ce  cos  ̂ . 

The  component  of  c^  directly  opposed  to  G  is  Ce  cos^  <j>  (vertically 
upward). 

Hence  g^  =  G  —  Ce  cos^  <^.  [89] 

*  See  Jordan's  Handbmh  der  Vertnessungskunde,  Vol.  Ill,  p.  627. 

t  The  centrifugal  force  may  be  expressed  by  -  ,  where  v  is  the  velocity  of  a  par- 

ticle at  the  equator.  The  distance  moved  by  a  particle  in  one  rotation  ( =  i  sidereal 

day  =  T  seconds)  is  2  wr.    Hence  the  centrifugal  force  =  \-^)  f  =  wV,  where  w 

is  the  angular  velocity.  T  =  86,400  sidereal  seconds  =  86,164.09  mean  solar 
seconds. 
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Substituting  in  [89]  the  value  of  G  at  the  equator, 

g<l.  =  ge  -^  Ce  -  Ce  COS^  0 

=  ge  +  Ce  sin^  <l) 
=  ge -h  (gp  -  ge)  sin^  <l>; 

that  is, 

=  ge(i  +^   ^sin^iY 
[88] 

In  order  to  obtain  an  accurate  numerical  expression  for  g^, 

of  the  same  general  form  as  the  above,  we  may  write 

g<i>  =  ge(^  +B  sin2  <f,) 

and  then  determine  the  value  of  B  which  is  in  best  agreement 

with  all  observed  values  of  g.  For  such  a  formula  Dr.  Helmert  * 
published,  in  1884,  the  equation 

go  =  978.000  (i  +  0.005310  sin^  <i>),  [90]- 

in  which  go  is  supposed  to  be  the  value  at  sea-level  and  the  unit 
is  dynes  of  force,  or  centimeters  of  acceleration. 

This  may  be  expressed  for  convenience  in  terms  of  go  at  lati- 

tude 45°.     Since  sin^  45°  =  |, =  .(..f); 
and  since 

and 

2  sin^  (j)  =  1  —  cos  2  <f), 

sin^  <t>  =  2  ~  h  cos  2  <f> 

go  = 

g45 

I  + B 
(■+B(-^-icos.*)) 

=  gi5 

I    — 

B 

2 I  + 
B 

cos  2  0 

/ 

which  becomes 

go  =  980.597  (i  —  0.002648  cos  2  <f>). 

*  Helmert,  Hohere  Geodasie,Vol.  II,  p.  241. [91] 
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In  1901  Dr.  Helmert  gave  the  more  accurate  forms 

go  =  978.046  (i  +  0.005302  sin^  0  —  0.000007  sin^  2  </»)    [92] 

and  go  =  980.632  (i  —  0.002644  cos  2  0+  0.000007  cos^  2  <^),  [93] 

in  which  the  number  0.000007  (—  i^d  is  a  coefficient  found 
theoretically  from  assumptions  regarding  the  internal  structure 
of  the  earth. 

These  formulae  refer  to  the  absolute  value  of  g  at  Vienna.  To 

refer  to  the  "Potsdam  system,"  to  which  all  values  of  g  observed 
in  the  United  States  are  referred,*  the  equations  must  be  written 

go  =  978.030  (i  +  0.005302  sin^  <t>  —  0.000007  sin^  2  (f))    [94] 

and    go  =  980.616  (i  —0.002644  cos  2  ̂  +0.000007  cos^  2  0).   [95] 

In  the  Coast  Survey  Special  Publication  No.  1 2 ,  entitled ' '  Effect 
of  Topography  and  Isostatic  Compensation  upon  the  Intensity 

of  Gravity  "  (second  paper)  the  following  formula  is  given: 

go  =  978.038  (i  +  0.005302  sin^  (f)  —  0.000007  sin^  2  0),  [96] 

equivalent  to 

go  =  980.624  (i  —  0.002644  cos  2  0+  0.000007  cos^  2  0), 

which  is  Helmert's  formula  of  1901  corrected  by  0.008  dyne. 
The  constants  in  these  equations  were  derived  from  observations 

in  the  United  States  only. 

In  Special  Publication  No.  40,  a  study  is  made  of  observations 

in  the  United  States,  Canada,  Europe  and  India.  The  formula 

resulting  from  this  investigation  is 

go  =  978.039  (i  +  0.005294  sin^  0  —  0.000007  sin^  0),      [97] 

145.   Clairaut's  Theorem. 
The  relation  between  the  flattening  of  the  spheroid  at  the  poles 

*  The  American  observations  for  g  were  referred  to  Greenwich  (England),  Paris 
(France),  and  Potsdam  (Germany)  by  observations  made  in  1900  by  G.  R.  Putnam, 
(see  Coast  Survey  Report  for  1901). 
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and  the  values  of  gp  and  ge  is  expressed  by  Clairaut's  theorem, 
pubHshed  in  1743,  namely, 

a  2     ge  ge 

in  which  c^  is  the  centrifugal  force  at  the  equator.  In  this  formula 
the  terms  of  the  second  order  have  been  omitted.  If  these,  terms 

are  included,  the  formula  becomes 

a  2      ge  \3    \ge/  14     ge  21  21  / 

in  which  B  and  Bi  are  coefficients  to  be  determined  from  the 

observations  (Helmert,  Hd'here  Geoddsie,  Vol.  II,  p.  83).  It  is 
by  means  of  this  equation  that  the  form  of  the  earth  is  com- 

puted from  gravity  observations. 
146.   Pendulum  Apparatus. 
Nearly  all  of  the  observations  of  gravity  for  geodetic  purposes 

are  made  with  pendulums  of  invariable  length,  by  the  relative 
method.  The  description  of  apparatus  in  the  following  articles 

will  be  limited  to  one  type,  the  half-seconds  invariable  pendulum 
apparatus  as  designed  and  constructed  by  the  United  States 

Coast  Survey.  The  first  half-seconds  invariable  pendulum  with 
electrical  apparatus  for  determining  the  period  appears  to  have 
been  devised  by  Sterneck  (Austria)  in  1882.  In  1890  T.  C. 
Mendenhall,  then  Superintendent  of  the  Coast  and  Geodetic 
Survey,  designed  an  apparatus  of  this  kind  but  differing  in  many 
details,  however,  from  any  previous  design.  This  apparatus  has 
been  used  ever  since  that  time  in  substantially  the  same  form 
excepting  the  addition  of  the  interferometer  for  determining  the 

flexure.  This  apparatus  includes  three  half-second  pendulums, 

each  about  248"""  long  and  having  an  agate  plane  at  the  point  of 
suspension.  The  agate  plane  rests  on  a  knife-edge  support  (angle 

of  130°)  attached  to  the  pendulum  case  in  which  the  pendulums 
are  enclosed  when  they  are  swung.  The  use  of  the  blunt  angle 
on  the  knife  edge  and  the  placing  of  the  plane  (rather  than  the 
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knife  edge)  on  the  pendulum  are  designed  to  secure  greater 
permanence  of  length,  upon  which  the  accuracy  of  the  method 
depends.  The  pendulums  are  made  of  an  alloy  of  copper  and 
aluminum  and  weigh  1200  grams  each.  The  three  are  of  slightly 
.different  lengths  so  that  they  will  have  different  periods.     Their 

Fig.  85.    Dummy  Pendulum  (with  thermometer),  Kegular  Pendulum,  and 
Leveling  Pendulum. 
(C.  L.  Berger  and  Sons.) 

form  (Fig.  85)  is  such  as  to  give  strength  and  at  the  same  time 
offer  but  little  resistance  to  the  air.  In  addition  to  the  three 

observing  pendulums  there  is  a  dummy  pendulum,  of  the  same 
size  and  shape  but  carrying  a  thermometer  packed  in  filings  of 
the  same  metal.  There  is  also  a  small  pendulum  provided  with 
a  spirit  level  for  leveling  the  knife  edge.     Pendulums  made  of 
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invar  metal  are  now  (19 19)  being  constructed  by  the  instrument 
division  of  the  Coast  and  Geodetic  Survey  so  that  it  will  be 
possible  to  make  gravity  observations  on  mountain  peaks  and 
other  places  where  the  control  of  temperature  is  difficult.  The 

use  of  this  metal  will  make  it  unnecessary  to  construct  a  "  con- 
stant temperature  room." 

The  pendulums  are  swung  in  an  air-tight  case  from  which  the 
air  may  be  nearly  exhausted  by  means  of  a  pump.  Levers  are 
provided  for  lowering  the  pendulum  onto  the  knife  edge  and  for 
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Fig.  86.     Flash  Apparatus. 

starting  and  stopping  the  pendulum.  Inside  the  case  is  a  manom- 
eter tube  for  registering  the  air  pressure,  and  also  an  additional 

thermometer.  Levels  are  provided  for  leveling  the  case,  and 
there  is  a  graduated  scale  under  the  pendulum  for  reading  the  arc 
of  oscillation.  In  the  most  recent  work  of  the  Coast  Survey 

the  pendulum  receiver  has  been  enclosed  in  a  felt  and  leather 
case  to  prevent  fluctuations  in  temperature. 

The  observations  are  made  by  comparing  the  times  of  oscilla- 
tion of  the  pendulums  with  the  half-second  beats  of  a  break- 

circuit  (sidereal)  chronometer  connected  electrically  with  the 

"flash  apparatus  "  used  for  observing  the  coincidence. 



PENDULUM   APPARATUS  215 

The  flash  apparatus  (Fig.  86)  consists  of  a  shutter  a  operated 
by  the  armature  of  an  electromagnet  b  in  the  circuit  and  a  mirror 
c  behind  the  shutter  which  reflects  light  through  the  slit  d  to  two 
small  mirrors  e,  which  reflect  it  into  an  observing  telescope  /;  one 

of  the  small  mirrors-is  attached  to  the  pendulum  and  the  other 

to  the  knife-edge  support.  In  the  most  recent  form  of  the 
flash  apparatus,  the  observer  looks  down  through  a  vertical  tel- 

escope and  sees  the  flash  reflected  by  a  prism.  This  arrange- 
ment is  more  convenient  for  the  observer  than  the  older  form 

because  the  pendulum  receiver  is  usually  mounted  on  a  very  low 

support. 
When  the  pendulum  is  at  rest  and  the  shutter  open,  a  beam 

of  light  from  a  lamp  *  at  one  side  of  the  apparatus  strikes  the 

mirror  c  at  an  angle  of  45°  and  passes  through  the  slit;  it  is 
reflected  from  both  mirrors  at  e  and  appears  to  the  observer  as 
two  horizontal  bright  slits  side  by  side.  The  mirrors  may  be 
adjusted  so  that  these  slits  appear  to  be  at  the  same  height,  so 

as  to  form  one  continuous  band.  If  the  pendulum  is  set  swing- 
ing, the  reflected  image  now  appears  to  travel  up  and  down, 

while  the  image  from  the  other  mirror  is  stationary.  If  the 
shutter  is  closed  and  allowed  to  open  only  for  an  instant  at  the 
end  of  each  second  (or  each  two  seconds),  the  observer  sees  that 
at  each  successive  opening  of  the  shutter  the  moving  image  has 
changed  its  position  relative  to  the  fixed  image.  This  is  due  to 
the  fact  that  the  period  of  the  pendulum  is  longer  than  the 
sidereal  second  and  the  pendulum  has  made  slightly  less  than 
one  complete  (double)  oscillation.  By  watching  the  flashes  and 

noting  the  chronometer  readings  when  they  coincide,  the  ob- 
server obtains  the  number  of  seconds  between  two  successive 

coincidences.  During  this  interval  the  pendulum  has  evidently 

lost  just  one  oscillation  on  the  (half-second)  beats  of  the  chronom- 
eter. In  the  interval  between  two  successive  coincidences  the 

pendulum  has  made  one  less  than  twice  as  many  oscillations   as 

*  An  electric  bulb  placed  inside  the  flash  box  is  now  used  instead  of  the  oil 
lamp. 



2l6  GRAVITY  MEASUREMENTS 

the  chronometer  has  beat  seconds.  During  the  interval  between 
any  two  coincidences  the  number  of  oscillations  is  twice  the 
number  of  seconds  (s)  less  the  number  of  coincidence  intervals 
(w).     Hence  the  time  of  one  oscillation  (P)  is  given  by 

2  s  —  n 

An  examination  of  this  formula  will  show  that  an  error  in 

noting  the  times  of  coincidence  produces  a  relatively  small  error 
in  P,  and  for  this  reason  the  method  is  almost  independent  of  the 

observer's  errors. 
On  account  of  the  variation  of  g  (and  consequently  of  P)  with 

the  latitude  of  the  station,  it  is  necessary  to  use  a  mean-time 
chronometer  at  stations  situated  near  the  pole,  because  the  period 

of  the  pendulum  approaches  so  closely  to  the  sidereal  half-second 
that  the  coincidence  intervals  are  inconveniently  long.  In  case 

a  mean- time  chronometer  is  used,  the  formula  becomes 

P  =  -^'  [loo] 2  s  -{-n  • 

147.  Apparatus  for  Determining  Flexure  of  Support. 

Observations  with  pendulums  mounted  on  a  very  flexible  sup- 
port show  plainly  that  when  a  pendulum  is  set  swinging,  it  com- 

municates motion  to  the  case  and  the  support  and  sets  them 
oscillating,  and  this  oscillation  in  turn  affects  the  observed  period 
of  the  pendulum.  The  apparatus  now  used  to  measure  the 
effect  of  this  flexure  is  one  which  operates  on  the  principle  of  the 

interferometer.*  This  is  an  optical  device  (Fig.  87)  consisting 
of  a  lamp  and  lens  arranged  so  as  to  furnish  a  beam  of  sodium 
light;  a  glass  plate  arranged  so  as  to  separate  the  beam  of  light 
into  two  parts,  one  of  which  is  transmitted,  the  other  reflected; 
two  mirrors,  one  in  the  path  of  each  beam  of  light;  and  a  telescope 

for  observing  the  image.     When  the  different  parts  of  the  appara- 

*  A  description  of  the  interferometer  will  be  found  in  the  Coast  Survey  Report 
for  1910. 
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tus  a^re  properly  adjusted,  dark  and  light  bands  will  appear  in  the 

field  of  the  telescope,  owing  to  interference  of  the  sodium-light 
waves  of  the  two  beams.  One  of  the  mirrors  is  mounted  on  the 

pendulum  receiver,  while  the  rest  of  the  apparatus  is  on  an  inde- 
pendent support  in  front  of  it.  When  the  pendulum  is  set 

swinging,  it  sets  the  case  in  motion,  and  this  in  turn  moves  the 
mirror,  causing  a  slight  variation  in  the  length  of  the  path  of  one 
of  the  beams  of  light.  This  causes  the  interference  bands  to 
shift  back  and  forth;  the  amount  of  shift  may  be  estimated  by 

observing  the  motion  of  the  bands  over  a  cross-hair  or  a  scale  in 
the  field  of  the  telescope.     It  is  usually  observed  by  noting  the 

l-IG. 

scale  readings  of  both  edges  of  some  band  in  each  of  its  two  posi- 
tions (before  and  after  shifting).  The  movement  of  the  edges 

of  a  band  divided  by  the  width  of  the  band  (in  scale  divisions) 
gives  the  movement  in  units  of  the  width  of  a  band.  Fig.  88 
represents  the  interference  (dark)  bands  and  the  scale  divisions 
in  the  field  of  the  telescope. 

Tests  made  with  the  pendulum  mounted  on  supports  of  dif- 
ferent degrees  of  flexibility  will  show  the  relation  between  the 

observed  movement  of  the  fringe  bands  and  the  resulting  error  in 

the  period  of  the  pendulum.  In  the  Coast  Survey  tests  the  re- 
sults showed  that  a  movement  equal  to  the  width  of  one  band 

produced  a  change  of  173  in  P  in  units  of  the  seventh  decimal 
place.    This  is  more  conveniently  expressed  as  follows:  o.oi  F 
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produces  a  change  of  1.73  in  P,  where  F  is  the  width  of  a  band. 
This  constant  was  determined  with  the  pendulum  swinging 

through  an  arc  of  5"""  on  the  scale,  and  all  observed  flexures  must 
be  reduced  to  this  arc  before  correcting  P, 

148.   Methods  of  Observing. 
The  receiver  should  be  mounted  on  a  sohd  support  such  as  a 

cement  or  brick,  pier,  the  foot  screws  cemented  to  the  pier,  and 
the  instrument  sheltered  as  in  case  of  astronomical  observations. 

It  is  important  that  the  instrument  should  be  so  sheltered  that 
the  temperature  will  not  fluctuate  rapidly.  The  apparatus 
should  be  leveled  by  means  of  the  spirit  level  on  the  outside  of  the 
case  and  then  the  knife  edge  should  be  leveled  by  means  of  the 
levehng  pendulum.  In  moving  the  pendulums  great  care  should 
be  used  to  protect  them  from  injury  and  to  prevent  any  foreign 
matter  from  adhering  to  them.  The  accuracy  of  the  results  will 
depend  upon  the  permanency  of  length,  and  any  injury  due  to 
fall,  or  change  of  period  due  to  change  in  the  mass,  will  affect  the 
period  and  vitiate  the  results.  The  pendulums  should  not  be 
touched  with  the  hands,  but  should  be  lifted  by  means  of  a 

special  hook  made  for  this  purpose.  The  flash  apparatus,  chro- 
nometer, and  interferometer  should  be  placed  upon  supports  that 

are  entirely  independent  of  the  pendulum  support. 

Various  programs  of  observing  have  been  tried,  but  the  follow- 
ing has  been  chiefly  used  by  observers  of  the  Coast  Survey.  Each 

of  the  three  pendulums  is  swung  first  in  the  direct  and  then  in  the 

reversed  position,  making  six  swings  each  of  eight  hours'  dura- 
tion. The  error  of  the  chronometer  is  obtained  by  star-transit 

observations  (Arts.  52-71)  made  just  before  the  beginning  and 
at  the  end  of  the  series.  The  following  table  will  indicate  more 
clearly  the  order  of  operations. 

Star  Observations Q-IO  P.M. 
Start  Pendulum  No.  i 10  P.M. 

Reverse  No.  i 6  A.M. 
Start  No.  2 2  P.M. 
Reverse  No.  2 10  P.M. 

Start  No.  3 6  A.M. 

Reverse  No.  3 2  P.M. 

Star  Observations 

9  P.M. 

Stop  Pendulum  No.  3    after  star  observations 
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If  star  observations  are  lost  at  the  end  of  the  set,  the  swings 

are  continued  until  star  observations  are  obtained.  At  the  begin- 
ning and  end  of  each  swing  several  coincidences  are  observed.  At 

the  end  of  each  swing  several  more  are  observed.  Very  little 
time  is  lost  between  swings,  so  that  they  are  almost  continuous 
between  star  observations.  For  this  reason  the  variations  in  the 

rate  of  the  chronometer  are  almost  entirely  eliminated  from  the 

mean  result  of  all  the  swings. 

Since  191 3  the  Coast  Survey  observers  have  obtained  the 

chronometer  corrections  from  the  Naval  Observatory  time  sig- 
nals instead  of  by  direct  observations.  This  results  in  a  great 

saving  of  time  and  cost.  Another  change  in  the  regular  pro- 
gram, recently  introduced,  is  to  swing  the  pendulums  for  twelve 

hours  instead  of  eight,  and  in  the  direct  position  only,  instead  of 
direct  and  reversed. 

After  a  pendulum  is  placed  in  position  on  its  support,  the  case 

closed,  and  the  air  exhausted  until  the  pressure  is  about  60""",  the 
observer  lowers  the  pendulum  until  it  rests  upon  the  knife  edge, 

starts  it  swinging  through  an  arc  of  about  0°  53^  and  notes  the 
arc  on  the  scale.  To  observe  coincidences,  the  observer  switches 

in  the  chronometer  and  the  flash  apparatus  and  then  watches  the 

flashes  to  see  when  they  are  approaching  coincidence.  As  the 

two  approach  he  notes  the  hours,  minutes,  and  seconds  on  the 

chronometer  when  the  advancing  edge  of  the  moving  flash  touches 

the  first  edge  of  the  fixed  flash.  A  few  seconds  later  he  notes 

when  the  receding  edge  of  the  moving  flash  touches  the  second 

edge  of  the  fixed  flash.  The  mean  of  the  two  gives  the  true  time 

of  coincidence  of  centers  more  accurately  than  it  could  be  ob- 

served directly.  Such  observations  are  made  on  several  succes- 
sive coincidences,  the  flash  moving  alternately  upward  and 

downward.  By  combining  the  up  and  the  down  observations, 
errors  of  adjustment  are  eliminated.  After  a  few  of  these  have 

been  recorded,  the  observer  cuts  out  the  chronometer  and  leaves 

the  pendulum  swinging  for  a  period  of  nearly  eight  hours.  Im- 
mediately after  the  observations  for  coincidences  are  completed, 
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the  temperatures  are  read  on  the  two  thermometers,  and  the 

pressure  is  read  on  the  manometer  tube.  At  the  end  of  the 

eight-hour  period  the  observer  again  observes  a  few  coincidences 

as  well  as  the  arc  (now  diminished  to  about  o°  20'),  the  pressure, 
and  the  temperatures.  It  is  not  necessary  that  he  continue 

observing  throughout  the  whole  eight-hour  period,  because  the 
few  observations  already  referred  to  make  it  possible  to  estimate 

correctly  the  number  of  coincidences  which  must  have  occurred 

between  the  observed  times.  It  is  customary  to  take  the  ob- 
servations with  two  or  more  chronometers  as  a  check. 

This  description  applies  to  the  8-hour  program  outlined  above. 

If  the  pendulums  are  swung  for  a  12 -hour  period  it  is  necessary 

to  start  each  pendulum  with  a  somewhat  larger  arc  (i°27')  in 
order  that  it  may  have  a  sufficient  ampHtude  at  the  end  of  12 
hours  to  enable  the  observer  to  read  the  coincidences  of  the  flash 

conveniently  and  accurately. 

It  is  desirable  that  the  temperature  of  the  apparatus  be 

kept  as  nearly  uniform  as  possible,  and  that  there  be  little 

vibration.  In  order  to  allow  the  pendulum  time  to  assume  the 

temperature  of  the  receiver  the  next  pendulum  to  be  swung  is 

placed  inside  the  case  before  it  is  used  in  the  observations. 

While  the  case  is  still  in  position  the  observer  must  place  the 

interferometer  in  position  and  observe  the  movement  of  the 

interference  bands  while  the  pendulum  is  swinging. 

149.   Calculation  of  Period. 

After  the  observations  are  complete  and  the  time  observations 

and  the  chronometer  rates  are  computed,  the  time  of  one  oscilla- 
tion for  each  pendulum  in  each  position  is  found  as  follows: 

divide  the  total  number  of  seconds  in  an  8''  interval  by  the  num- 
ber of  seconds  found  for  one  coincidence  interval  (see  example), 

to  obtain  the  number  of  intervals  that  have  occurred  during  the 
swing.  Since  this  must  be  a  whole  number,  there  will  be  no 

difficulty  in  determining  it  correctly.  Then  reverse  the  process, 

dividing  the  total  interval  by  the  number  of  coincidence  intervals, 

to  obtain  the  accurate  value  of  the  number  of  seconds  (s)  in  one 
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coincidence  interval.    The  uncorrected  period  of  the  pendulum 
is  found  by 

P  =  — ^  [lOl] 
25—1 

for  a  sidereal  chronometer,  Table  G,  or 

P  =  ̂ —  [102] 
2S  -{-  1 

for  a  mean-time  chronometer. 
150.   Corrections. 
This  period  must  then  be  corrected  to  reduce  it  to  its  value  at 

assumed  standard  conditions,  namely, 

Infinitesimal  arc. 

Temperature  15°  C, 
Pressure  60"""  at  0°  C, 
True  sidereal  time,  and 
Inflexible  support. 

The  correction  to  reduce  P  to  its  value  for  an  infinitesimal  arc 

is 

''     PM  sin  (<^  +  <t>')  sin  (</>  -  <^0  r    « , 
32        log  sm  0  —  log  sm  0 

a  formula  given  by  Borda,  in  which  P  =  the  period,  M  =  the 

modulus  of  the  common  system  of  logarithms,  and  <f>  and  0'  = 
the  initial  and  final  arcs. 

The  temperature  correction  is 

aP(i5°-n,  [104] 

T°  being  the  observed  temperature  centigrade  and  a  the  co- 
efficient to  be  found  by  trial,     (a  =  +0.000008  34). 

The  pressure  correction  is 
Pr 

K  60"""  - I  +  0.00367  2^ 
in  which       Pr  =  observed  pressure  in  mm, 

T°  =  temperature  centigrade, 
and  K  =  coefficient  to  be  found  by  trial. 

],  [105] 
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The  constant  0.00367  is  the  coefficient  of  expansion  of  air  for 
i°C. 

The  rate  correction  is  given  by  the  expression 

+  0.000011574  i?P,  [106] 

where  R  =  daily  rate  of  chronometer  on  sidereal  time,  +  when 

losing  and  —  when  gaining.  The  coefficient  is  the  reciprocal  of 
the  number  of  seconds  in  one  day. 

The  flexure  correction  is  computed  by  dividing  the  observed 

movement  of  the  fringe  band  (in  scale  divisions)  by  the  width  of 

a  band  and  then  reducing  this  to  an  arc  of  5"'"'  by  dividing  by  the 

observed  arc  and  multiplying  by  5.  The  result  is  the  displace- 

ment for  a  5"""  arc  in  terms  of  the  width  of  a  band.  This  dis- 
placement, multiplied  by  the  coefficient  (173  mentioned  before), 

gives  the  correction  to  be  subtracted  from  P. 
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TABLE  D.  — REDUCTION  OF  SCALE  READING  IN 
MILLIMETERS  TO  MINUTES  OF  ARC 

Scale. i.o  mm. 2.0  mm. 
3.0  mm. 4.0  mm. 

5-0  mm. 

mm. / ' ^ ' I 

o.o 12 

23 

35 

46 

58 

O.I 

13 
24 

36 

48 

59 
0.2 

14 

26 

37 

49 

60 
0-3 

IS 

27 

38 

50 

61 
0.4 

16 28 

39 

51 

63 

o-S 

17 

29 

41 

52 

64 

0.6 

19 

30 

42 

53 

65 

0.7 

2C 

31 

43 

55 

66 

0.8 
21 

32 

44 

56 

67 

0.9 

22 

34 

45 

57 

68 

TABLE   E.    ARC  CORRECTIONS   (ALWAYS .  SUBTRACTIVE) 
FOR  HALF-SECOND  PENDULUMS 

Arc  at  Beginning 

Arc 
at 

90'. 
85'. 

80'. 

75'. 70'. 
65'. 

60'. 

55'. 
50'. 

45'. 
40'. 

35'. 
30'. 

25'. 
20'. 

end. 

5 
10 12,0 II. 0 10. 0 

9.0 

8.1 7.3 

6.5 

5.8 
5.0 

4-3 

3.6 

3.0 

2.4 

1-9 

1-4 

IS 

14.4 
13  3 

12.2 II. I 10. 0 

9.0 

8.0 

7.2 

6.3 

5.4 

4.6 

3.9 

3.2 

20 

16.9 

IS. 6 
14-3 

13-0 

II. 8 

10.7 

9.6 

8.6 

7.6 

6.6 

57 4.9 

4.1 

23 

19  3 
17.8 

16.4 

iS-O 

137 12.4 

II. 2 10. 1 

9.0 

8.0 

6.9 

30 

21.7 
20.1 

18.5 

17.0 
15.6 

14.2 

12.9 

II. 6 

10.4 

9.2 

8.1 

3S 
24.1 

22.4 
20.7 

19.2 17.6 
16. 1 

14.6 13-2 

II. 8 

40 

26.5 24.7 

22.9 

21.2 

195 17.9 
16.3 

14.8 

13.3 

45 29.0 27.1 25.2 

23.4 
21.6 

19.9 

18.2 

50 

31.5 
29.4 27.4 25. S 

23.6 
21.8 20.0 

55 

34- 1 32.0 
29.8 27.8 25.8 60 36.7 34.4 

32.2 30.0 

27.9 6S 

39  4 

37.0 
34-6 

70 

42.1 
39-6 37.1 

75 44.9 
80 

47-7 

85 

90 

In  practice  it  is  convenient  to  combine  Tables  D  and  E  into 

a  single  table  computed  for  such  intervals  that  Uttle  interpola- 
tion is  necessary. 
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TABLE  P.  —  CORRECTION   FOR  PRESSURE 

Temp. 

C. 
so  mm. 55  mm. 

60  mm. 
6s  mm. 70  mm. 

75  mm. 

80  mm. 8s  mm. 
90  mm. 

0 

+  10 

+5 
0 

-5 

—  10 

-15 

—  20 

-25 

-30 

I 

+  10 

+5 
0 

-5 

—  10 

-15 

—  20 

-25 

-30 

2 

+  10 

+5 
0 

-5 
-  9 

-14 

-19 
-24 

29 

3 II 
6 

+  1 

4 9 

14 

19 24 

29 

4 II 6 

+  1 

4 9 

14 

19 24 

29 

S II 6 

+  1 

4 9 

14 

19 24 

28 
6 II 6 

+1 

4 9 

14 

19 
24 

28 

7 II 6 2 3 8 

13 

18 

23 

28 

8 II 6 2 3 8 

13 

18 

23 
27 

9 12 7 2 3 8 

13 
17 

22 

27 

10 12 7 2 3 8 

13 

17 

22 

27 

II 12 7 2 3 7 12 

17 

21 

26 
12 12 7 2 2 7 

12 

17 

21 

26 

13 

12 7 3 2 7 12 

17 

21 

26 

14  . 
12 8 3 2 7 II 16 21 

.  26 

IS 

13 

8 3 2 6 II 16 20 26 
16 

13 

8 3 2 6 II 

16 

20 

25 

17 

13 

8 4 6 II 

15 

20 

25 

18 

13 

8 4 6 10 

15 

20 

24 

19 

13 

9 4 

—  I 

5 10 

15 

20 

24 

20 

13 

9 4 

-I 

5 10 

15 

20 

24 

21 

14 

9 

'   4 

—  I 

5 10 

14 

19 

24 

22 

14 

9 4 

—  I 

5 10 

14 

19 

23 

23 

14 

9 5 0 5 9 

14 

19 

23 

24 

14 

9 5 0 4 9 

14 

18 

23 

25 

14 

10 5 0 4 9 

13 

18 22 

26 

14 

10 
5 

+  1 

4 9 

13 

18 

22 

27 

14 

10 
5 

+  1 

4 8 

13 

17 

22 
28 +  15 

+  10 

+6 +  1 

-  4 -  8 

-13 

-17 

22 

29 

+  15 

+  10 

+6 +  1 

-  3 
-18 —  12 

-17 

—  21 

30 

+  15 

+  10 

+6 +  1 

-  3 
-  8 

—  12 

-17 

—  21 

Body  of  table  gives  corrections  (in  7th  decimal  place  of  sec- 
onds) to  period  of  half  seconds  pendulum. 



226 GRAVITY  MEASUREMENTS 

TABLE  G.  — PERIODS  OF  QUARTER  METER  PENDULUM 
Note  :  To  obtain  period  to  7th  decimal  place,  prefix  .so  or  .500  to  figures  in  the  table. 

Body  of  table  gives 

0 2200 
2300 2400 

2500 2600 

2700 

2800 

2900 

3000 
3100 

0 11,390 
10,893 10,438 

10,020 
9634 

9276 

8944 
8636 

8347 

8078 

I 

84 

89 

34 16 

30 

73 

41 

33 44 75 
2 79 

84 

30 

12 26 

70 

38 

30 
42 

72 

3 74 79 

25 

08 

23 

66 35 

27 

39 

70 

4 

69 

74 
21 

04 

19 

63 

32 

24 

36 

67 

S 11,364 10,870 
10,417 

10,000 9615 
9259 

8929 

8621 

8333 
8064 

6 

58 

65 

12 

9996 

12 

56 

25 

18 

30 

62 

7 53 
60 

08 

92 

08 

52 

22 

15 

28 59 
8 

48 

55 

04 

88 

04 

49 

19 

12 

25 

57 
9 43 

51 

10,399 

84 

01 

46 

16 

09 

22 

54 
10 11,338 10,846 

10,395 

9980 

9597 

9242 

8913 

8606 

8320 

8052 

II 
33 

41 

91 
76 

93 
39 10 

03 

17 

49 

12 28 
37 

86 

72 

90 

35 06 00 

14 

46 

13 

22 

32 

82 
68 86 

32 

03 

8597 

II 

44 

14 

17 

27 

78 

64 

82 

28 00 

94 

08 

41 

IS 

11,312 10,822 

10,373 

9960 
9578 

9225 

8897 

8591 

8306 

8039 

16 

07 

18 

69 

56 

75 22 

94 

88 

03 

36 

17 

02 

13 

65 

52 

71 

18 

91 

85 

00 33 
18 11,297 08 

61 

48 

68 

IS 

87 

82 

8297 

31 

19 

92 

04 

56 

44 

64 

12 

84 

79 

95 28 
20 11,287 

10,799 
10,352 

9940 

9560 
9208 

8881 8576 

8292 

8026 

21 
82 

94 

48 

36 

57 

05 

78. 

73 

89 

23 

22 

76 

90 

43 

32 

53 
01 

75 

70 

86 20 

23 

72 

8S 

39 28 

49 

9198 

72 

68 

84 

18 

24 

66 80 35 

25 

46 

95 

68 

64 

81 

IS 

25 

11,261 10,776 10,331 

9921 9542 
9x91 

8865 

8562 

8278 

8013 

26 

S6 

71 

26 

17 

38 

88 62 59 75 10 

27 

51 

67 

22 

13 

35 

84 

59 

56 

73 08 
28 

46 

62 
18 

09 

31 

81 

56 

53 

70 

05 

29 

41 

57 

14 

OS 
27 

78 

53 

SO 

•67 

03 

30 

11,236 

10,753 10,309 

9901 

9524 

9174 8850 

8547 8264 

8000 

31 

31 
48 

05 

9897 20 

71 46 

44 62 7997 

32 

26 
44 

01 93 

17 

68 43 

41 

59 

95 
33 21 39 

10,297 

89 
13 

64 

40 

38 

56 

92 

34 
16 

34 

92 

85 

09 

61 37 35 

53 

90 

35 11,211 
10,730 

10,288 

9881 

9506 

9158 

8834 

8532 

8251 

7987 
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WHEN   PENDULUM   IS  SLOWER  THAN   CHRONOMETER 

Top  and  left-hand  arguments  combined  give  interval  5  =  ten  coincidence  intervals. 
(  =  period  in  seconds. 

3200 
3300 

3400 
3SOO 3600 

3700 
3800 

3900 

4000 4100 

■ 

4206 

0 

782s 
7587 7364 

7^53 
6954 

6766 6588 6418 

62S8 

610S 

S960 

0 

22 

85 

62 

51 

52 

64 

86 

17 

56 

04 

58 

I 

20 

83 

59 
49 

5° 

62 

84 

15 

55 

02 

57 2 

17 

80 57 

47 

48 

60 

82 

14 

53 01 

55 

3 

15 

78 

55 
45 

4b 

■59 

81 12 

52 

6099 

54 

4 

7812 
7576 

7353 7143 

6944 
6757 6579 

6410 

6250 6098 

5952 

5 

10 74 

51 
41 

42 

55 
77 

09 

48 

96 
51 

6 
08 

71 

49 
39 

41 

53 

7b 

07 

47 

95 

50 

7 
OS 

69 

46 

37 
39 

51 

74 

OS 

45 

93 

48 

8 
03 

67 

44 35 37 
49 

72 

04 

44 

92 

47 

9 

78CX5 

'7564 

7342 

7133 

6935 

6748 6570 

6402 

6242 
6090 

5945 

10 

7798 
62 

40 

31 

33 

46 

69 

00 

41 

89 

44 II 

96 

60 

38 

29 

31 

44 

67 

6399 

39 

87 

42 

12 

93 

58 

3b 

27 

29 

42 

65 

97 

38 

86 

41 

13 

91 

55 
34 

25 
27 

40 

63 

96 

36 

84 

40 

14 

7788 
7553 

7331 

7123 

6925 

6738 
6562 

6394 

6234 6083 

5938 

15 

86 

51 

29 

21 

23 

37 
60 

92 

33 81 

37 16 

«3 

48 

27 

18 21 

35 

58 

91 31 

80 

35 

17 

81 

46 

25 

16 

19 

33 

56 

89 

30 

78 

34 

18 

7« 

44 

23 14 

18 

31 

55 

87 

28 77 33 

19 

7776 
7542 

7321 7112 

6916 
6730 

6553 

6386 

6227 

6075 

5931 

20 

74 39 

19 

10 

14 

28 

SI 

84 

25 

74 

'30 

21 

71 

37 16 

08 
12 26 

50 

82 

24 

72 

28 

22 

69 

35 

14 

06 10 

24 

48 

81 

22 

71 

27 23 

66 

32 

12 

04 

08 
22 

46 

79 

20 

70 

26 

24 

7764 
7530 

7310 7102 
6906 6720 

6544 

6378 

6219 

6068 

5924 

25 

62 28 08 00 

04 

19 

43 

76 

17 

66 

23 

26 
59 

26 
06 

7098 

02 

17 

41 

74 16 

6S 

21 

27 

57 

23 04 

96 

00 

15 

39 
73 

14 64 

20 

28 

7754 

7521 

01 

94 

6898 

13 

38 

71 

13 

62 

19 

29 

7752 7519 
7299 

7092 

6897 

6711 
6536 

6369 

6211 6061 

5917 

30 

50 

16 

97 

90 

95 10 

34 

68 

10 59 

16 

31 

47 

14 

95 
88 93 

08 

32 

66 

08 

58 

14 

32 

45 12 93 86 

91 

06 

31 

64 

07 

56 

13 

33 
42 

10 

91 

84 

89 
04 

29 
63 

05 

55 12 34 7740 
7508 

7289 

7082 

6887 

6702 

6527 

6361 

6204 

6053 

5910 

35 
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TABLE  G   (Cow.)-  — PERIODS  OF  QUARTER  METER  PENDU- 
NoTE  :  To  obtain  period  to  7th  decimal  place,  prefix  .50  or  .500  to  figures  in  the  table. 

Body  of  table  gives 

0 •2200    23c » 
2400 2500 

2600 

2700 

2800 

2900 

3000 

1 

3100 

36 

06 

25 84 

78 

02 

54 

31 

30 48 

8S 

37 01 
20 

80 74 

9498 

51 

28 

27 

45 

82 

38 

11,196 16 75 

70 

95 

48 

24 24 

43 

80 
39 

91 

II 

71 

66 

91 

44 

21 21 

40 

77 

40 

11,186  10,* 

707 

10,267 

9862 

9488 
9141 

8818 

8518 

8237 

7974 

41 

81 02 

63 

58 

84 

38 

IS 

IS 

34 

72 

42 

76  10, ( 598 

58 

54 
81 34 

12 

12 

32 

69 

43 

71 

93 54 

50 

77 

31 

09 

09 

29 67 

44 66 
88 

50 46 

73 

27 

06 

06 26 

64 

45 11,161   IO,( 

584 

10,246 

9842 
9470 

9124 

8803 

8503 

8224 

7962 
46 

56 

79 

42 

39 66 21 

00 

00 

21 

59 
47 

51 

75 

38 

35 
62 

18 

8797 

8498 18 

57 

48 
46 

70 

33 

31 

59 

14 

94 
95 

16 

54 
49 

41 

66 

29 
27 

55 II 

90 

92 

13 

52 

5° 

11,136  10, 56 1 

10,225 

9823 

9452 
9108 

8787 8489 

8210 
7949 

SI 

31 

56 

21 

19 

48 

04 

84 

86 

08 

47 

52 

26 

52 

17 

16 

45 

01 

81 

83 
05 

44 
S3 21 47 12 12 

41 

9098 

78 

80 02 

42 

54 
16 

43 
08 

08 

38 

94 

75 

78 

8199 

39 
55 II, III  10, 538 

10,204 

9804 
9434 

9091 

8772 

847s 

8197 

7936 

56 

06 
34 10,200 

■  9800 

30 

88 

69 

72 

94 

34 

57 01 

29 

10,196 

9796 

27 

84 

66 

69 

91 
32 

S8 

11,096 

25 

92 

92 

23 

81 

63 

66 

89 

29 

59 

91 

20 88 88 20 

78 

60 

63 

86 

26 

60 
11,086  10, 5i6 

10,183 

9785 

9416 

9074 

8757 

8460 

8183 

7924 
61 

82 
II 79 81 

13 

71 

54 57 

81 21 

62 77 

07 

75 
77 

09 

68 

51 

54 

78 

19 

63 

72 

02 

71 

73 
06 

65 

47 

52 

75 16 
64 

67  10, 

598 

67 

69 

02 61 

44 

49 73 

14 

65 

11,062  10, 593 
10,163 

9766 9398 
9058 

8741 8446 

8170 

7911 

66 
57 

89 

59 62 

95 

55 

38 

43 

67 

09 

67 

52 

84 

54 

58 

92 

51 

35 

40 

6S 

06 
68 47 80 

50 

54 
88 

48 

32 

37 

62 

04 

69 

42 

75 

46 

50 

84 

45 

29 

34 

59 

01 

70 

11,038  10, 

571 

10,142 
9747 

9381 

9042 

8726 8432 

8iS7 

7899 
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LUM  WHEN   PENDULUM   IS   SLOWER  THAN  CHRONOMETER 

Top  and  left-hand  arguments  combined  give  interval  s  =  ten  coincidence  intervals. 
/  =  period  in  seconds. 

3200 
3300 

3400 3S00 3600 
3700 

3800 

3900 

4000 4100 

4200 

0 

.S8 

OS 

86 80 

85 

01 26 

60 02 

52 

oq 

3b 

35 

03 84 

78 

83 

6699 

24 

58 

00 

50 

07 

37 
33 01 82 

76 

81 97 22 

5b 

6199 

49 

06 

38 

30 
749S 

80 
74 

80 95 21 55 

97 

47 

05 

39 

7728 7496 7278 7072 

6878 

6693 
6519 

b353 

6196 6046 

5903 

40 

26 
94 

76 

70 

76 

92 

17 

52 

94 

44 02 

41 

23 

92 

74 

68 
74 

90 

16 

50 

93 

43 oo|  42 1 

21 

90 

72 

66 

72 

88 

14 

48 

91 42 

5899 

43 
18 

87 

70 

64 

70 

86 12 

47 

90 40 98 

44 

7716 7485 
7267 

7062 

6868 

6684 

6510 

6345 

6188 

6039 

5896 

45 

14 

'  8,s 

65 

60 66 

83 

09 

44 

87 

37 95 

4b 

II 80 

63 

58 

64 

81 

07 

42 

85 

3e 

93 

47 
09 

78 

61 

Sb 

62 
79 

05 

40 

84 

34 

92 

48 

06 

7b 

59 
54 

61 77 

04 

39 
82 33 

91 

49 
7704 7474 

7257 

7052 

6859 

6676 

6502 

6337 

6180 
6031 

5889 

50 

02 

72 

55 

50 

57 
74 00 

3b 

79 

30 

88 

51 

7699 

69 

53 

48 

55 

72 

6499 

34 
77 

28 

86 

52 

97 

67 

51 4b 

53 

70 

97 

32 
76 

27 

85 

53 
95 

b5 

48 

44 

51 

b9 

95 

31 

74 

26 

84 

54 

7692 7463 
7246 

7042 

6849 6667 6494 6329 

6173 
6024 

5882 

55 

90 

60 44 

40 

47 

65 

92 

28 

71 

23 

81 

56 

88 

58 

42 

38 
46 

63 

90 

26 

70 

21 

80 

57 

85 

5b 

40 
3b 

44 61 
88 

24 

68 20 

78 

58 

83 

54 

38 

34 

42 

60 

87 

23 
67 

18 

77 S9 

7680 
7452 7236 7032 

6840 
6658 

6485 

6321 

6i6s 
6017 

5875 

60 

78 

49 

34 

30 

38 

56 

83 

20 

64 

15 

74 61 

7b 

47 

32 

28 

36 

54 
82 

18 

62 

14 

73 

62 
73 45 

30 

26 

34 

52 

80 16 

61 

12 

71 

63 

71 

43 28 

24 

32 

51 78 

15 

59 

11 

70 

64 

7669 
7440 

7225 

7022 

6831 

6649 6477 
6313 

6158 

6010 

5868 

b5 

66 

38 

23 

20 

29 

47 
75 

12 

5b 

08 

67 

66 
64 

36 

21 
18 

27 

45 
73 10 

55 

07 

66 

67 

62 34 

19 17 

25 

44 

72 

08 53 

05 
64 

68 

59 

32 

17 

15 

23 

42 

70 

07 

52 

04 63 

6q 

7657 7429 7215 7013 6821 
6640 

6468 

6305 
6150 

6002 

5862 

70 
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TABLE  G   (Com.).  — PERIODS  OF  QUARTER  METER  PENDU- 
NoTE :  To  obtain  period  to  7th  decimal  place,  prefix  .50  or  .500  to  figures  in  the  table. 

Body  of  table  gives 

0 2200 
2300 24CX3 2500 2600 

2700 

2800 

2900 

3000 3100 

71 

33 
66 

38 

43 
77 

38 

23 
29 

54 

96 

72 

28 62 
34 

39 
74 

35 20 26 

51 

94 

73 

23 

57 

30 

35 

70 
32 

17 

23 

49 

91 

74 18 
53 

26 

31 

67 

29 
14 

20 

46 

89 

75 
11,013 10,548 

10,122 

9728 

9363 

9025 
8711 8418 

8143 

7886 

76 

08 
44 

17 

24 

60 22 08 

15 

41 

84 

77 

04 

40 

13 

20 

56 

19 

05 

12 

38 

81 

78 

10,999 
35 

09 

16 53 

16 

02 

09 

35 79 
79 

94 

31 

05 

12 

49 

12 

8699 

06 33 

76 

80 10,989 
10,526 10,101 

9709 

9346 

9009 

8696 

8403 

8130 7874 

81 

84 

22 

10,097 

05 

42 

06 93 01 28 

72 

82 79 18 

93 
01 39 02 

90 

8398 

25 69 

83 

74 

13 

89 

9697 
35 

8999 

87 

95 

22 

67 

84 

70 

09 

85 

94 

32 

96 

84 

92 

20 

64 

85 

10,965 10,504 
10,081 

9690 

9328 

8993 

8681 

8389 

8117 

7862 

86 60 10,500 77 86 

25 

90 78 

86 

14 

59 

87 

55 

10,495 

73 82 21 86 75 

84 

12 

57 

■  88 

51 

91 

68 
79 18 

83 

72 

81 

09 

54 

89 

46 

87 

64 

75 

14 

80 

69 

78 

06 

52 

90 

10,941 10,482 10,060 

9671 

9311 

8977 
8665 8375 8104 

7849 

91 

36 

78 

56 

68 08 74 62 

72 

01 47 

92 

31 

73 

52 

64 

04 

70 

60 

70 

8098 

44 
93 

27 

69 

48 

60 

01 

67 

56 

67 

96 42 

94 

22 

65 

44 

56 

9297 

64 

54 

64 

93 

40 

95 10,917 
10,460 

10,040 9653 9294 

8961 

8650 

8361 

8091 7837 

96 

12 

56 

36 

49 

90 

57 

48 

58 

88 

34 

97 
08 

52 

32 

45 

87 

54 

44 

56 

85 

32 

98 

03 

47 
28 

41 

83 

SI 

42 

53 

83 

30 

99 10,898 43 

24 

38 

80 

48 

39 

50 

80 

27 

100 
10,893 10,438 

10,020 
9634 

9276 

8944 

8636 

8347 

8078 

7825 
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LUM  WHEN    PENDULUM   IS  SLOWER  THAN   CHRONOMETER 

Top  and  left-hand  arguments  combined  give  interval  j  =  ten  coincidence  intervals. 
t  =  period  in  seconds. 

3200 
3300 

3400 
3500 3600 

3700 3800 

3900 

4000 4100 

4200 

0 

55 

27 

13 

II 

19 

38 

67 

04 

49 

01 

60 

71 

52 

25 

II 

09 

18 

37 

bS 

02 

47 
00 59 

72 

SO 

23 

09 
07 

16 35 

63 

CX3 

46 

5998 

58 

73 

48 

21 

07 
05 

14 

33 61 

6299 

44 

97 

5b 

74 
7645 

7418 
7205 7003 6812 

6631 

6460 

6297 

6142 
5995 

5855 75 

43 16 02 01 10 

30 

58 

96 
41 

94 

53 

76 

41 

14 

00 

6999 
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151.  Form  of  Record  cf  Pendulum  Observations. 

Following  is  a  specimen  record  of  a  single  swing  made  with 

'Apparatus  B,"  belonging  to  the  Coast  Survey. 

Station:  Sawah  Loento,  Sumatra.     Date:  May  7,  1901. 
Observer:  G.  L.  H.     Chronometer:  Bond  541  (sid.) 

Pendulum  B  4,  Direct,  on  Knife  edge  / 

Observed  coincidences. Pressure. Temperature. Arc. 

h      m    s 
mm. 

(C). 
mm. 

D    9  59  03 
U  10  02  12 

27-5 

D        05  II 

275 

22°. 6 

4-5  =  52' 

U       08  18 

550 

D        II  12 
U        14  19 

D    4  54  42 
U        58  12 28.0 
D    5  00  43 28.0 28.8 

0.9  =  10' 

U       04  08 

56.0 

D       06  42 
U       10  06 

5S-S  25.70 
4.2  Thar,  error        — . 30 

Si.3ato°C.  25°. 40 

Total  interval  (mean)  6*  55"*  43*  =  24,943*. 

Approximate  length  of  coincidence  interval  =  3"*  01*  =  181* 
Number  of  coincidence  intervals  =  138. 
Length  of  one  coincidence  interval  =  180.75. 
Period  (uncorrected)  =  0.5013869. 

Uncorrected  Period 
0.5013869 

Corr.  for  Arc 

-5 

"      "  Temp. 

-436 

"      "  Press. 

+9 

"      "  Rate  (No.  541) 

+128 

"      "   Flexure 

-6 

Corrected  Period  = 

0-5013559 
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152.  Calculation  of  g. 

After  the  period  has  been  corrected  for  instrumental  errors, 

the  value  of  gravity  (g)  may  be  found  by  comparing  the  period 

(P)  with  that  of  the  same  pendulum  at  some  point  where  the 

value  of  g  is  known,  say  at  Washington.  If  the  value  at  Wash- 
ington is  gu,,  then 

pi 

■'-    to  r      ̂ 1 

g  =  -^'gw  [107] 

Evidently  it  is  of  the  greatest  importance  that  the  period  should 

not  change  during  a  series  of  observations  made  for  the  purpose 

of  comparing  P  at  different  stations.  The  pendulum  should  be 

swung  at  frequent  intervals  at  the  base  station,  to  test  its  in- 
variability ;  in  any  case  it  should  be  swung  at  the  beginning  and 

end  of  every  series. 
Example.  Suppose  that  the  mean  corrected  period  of  a  set  of  pendulums  at  a 

station  is  0.5012480,  and  at  Washington,  the  base  station,  is  0.5007248,  and  that  g^ 

is  taken  as  980.111  dynes.    Then,  by  formula  [107],  g  =  978.066  djTies. 

153.  Reduction  to  Sea-Level. 
The  value  of  gravity  found  in  the  maimer  just  described  is  the 

value  at  the  station,  assuming  the  length  of  the  pendulum  to  be 
invariable  and  the  chronometer  correction  to  be  correct.  In 

comparing  values  at  different  stations,  however,  it  is  essential  to 

reduce  the  observed  value  to  the  value  at  sea-level.  A  formula 

long  used  for  this  purpose  is  one  devised  by  Bouguer  when  re- 
ducing observations  made  along  the  Peruvian  arc  in  1749.  This 

formula  is 

in  which  H  is  the  elevation  of  the  station  above  sea-level, 
r  is  the  radius  of  the  earth, 

d  is  the  density  at  the  surface, 

and  A  is  the  mean  density  of  the  earth. 

The  first  term  of  this  formula  allows  for  the  decrease  in  gravity 

due  to  height  alone;  the  second  term,  for  the  increase  in  attraction 

due  to  the  topography  beneath  the  station. 
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The  correction  for  height  of  station  is  derived  from  the  law  of 

gravitation,  namely  that  the  force  of  attraction  varies  inversely 

as  the  square  of  the  distance;  whence 

r=^^  =  (-f);(-f  ■••)• Therefore  go  =  gf  i  +  - — \  [109] 

The  correction  for  topography  is  based  upon  the  assumption 

that  it  is  due  to  the  attraction  of  a  cylinder  whose  axis  is  vertical 

and  whose  height  is  small  compared  with  its  width.  The  at- 
traction on  a  unit  mass  at  the  station  is  shown  by  Helmert  {Hbhe. 

GeocasiejNoX.  II,  pp.  142  and  164)  to  be 

Ag  =  2  TrkbH.  (a) 

The  attraction  of  the  sphere  on  the  same  mass  is 

r  3 

Dividing  {a)  by  (b)  and  multiplying  by  g, 

Adding  both  corrections  ([109]  and  [no])  and  remembering  that 

the  two  are  of  opposite  sign, 

,      2H         3    8    H 

go  =  g+g— -g-.^.y 

Another  method  of  reduction  which  has  been  much  used  is  to 

omit  the  last  term  of  Bouguer's  formula,  and  correcting  for 
height  only.     In  this  case  the  correction  to  g  is 

Corr.  =  +^— g,  [112] r 

or  Corr.  =  +0.0003086  fl"  (meters).  [112a] 

*  See  also  Clarke,  Geodesy,  p.  325.  For  an  additional  term  for  irregularity  in 
topography  see  Coast  Survey  Report  for  1894,  p.  22. 
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This  method  was  introduced  because  the  former  method 

showed  large  disagreement  between  observed  and  computed 

values.  The  second,  or  "free-air,"  method  showed  better  agree- 
ments, indicating  a  compensation  due  to  variations  of  density 

beneath. 

The  method  employed  by  Professor  Hayford  in  the  Coast 

Survey  investigation  shows  that  still  better  agreement  is  obtained 

by  the  introduction  of  the  assumption  of  isostasy.  The  results 

corrected  by  this  method  show  a  close  general  agreement,  but  in 

certain  locaUties  there  is  evidence  that  the  isostatic  adjustment 

is  imperfect  —  for  example,  near  Seattle  in  the  United  States 
and  at  certain  places  near  the  Himalayas  in  India. 

154.   Calculation  of  the  Compression. 

By  employing  a  large  number  of  observed  values  of  g  the  most 

probable  values  of  the  constants  ge  and  gp  may  be  found.  From 

these  data  the  compression  may  be  derived  by  applying  Clairaut's 
formula, 

a-b_S      Ce         gp-  go  r    gi 
(^  -2     ge  ge 

The  value  of  Ce  is  (— j  -a,  where  T  =  86164.09  seconds  and  a  is 

the  equatorial  radius.     Using  Clarke's  value  of  a,  the  resulting 
value  of  Ce  is  found  to  be 

Ce  =  0.033916, 

ana  using  for  ge  the  value  978.038,*  we  obtain 
—  =  -— —  =  0.0034678. 
ge      288.37 

Then  for  the  compression,  we  have 

a  —  h  I 
a  297.1 

If  the  more  accurate  form  [98a]  of  Clairaut's  equation  is  em- 
ployed, the  result  is 

a  —  h  _     I 
a         298.2 

*  See  Coast  Survey  Special  Publication  No.  12. 
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By  studying  a  large  number  of  gravity  observations  in  all  parts 
of  the  world  Helmert  obtained  the  value 

a  —  b  I 

a  298.3  ±0.7*  ^"^^ 
In  the  publication  entitled  Effect  of  Topography  and  Isostatic 
Compensation  upon  the  Intensity  of  Gravity  the  authors  give 

a  —  h  I 

a  298.4  ±1.5 

[114] 

In  the  most  recent  report  on  gravity  work  (Coast  Survey 
Special  Publication  No.  40,  191 7),  the  compression  calculated 
from  the  observations  in  the  United  States,  Canada,  Europe  and 
India  is 

a  —  h  1  r       ,   =    [115] 

a  297.4  ^     ̂^ 

By  employing  Equa.  [88]  the  value  of  g  may  be  computed  for 
each  station  on  the  assumption  that  the  earth  is  a  spheroid.  A 
comparison  at  each  station  of  the  observed  and  computed  values 
of  gravity  indicates  to  what  extent  the  geoid  departs  from  the 
spheroid  at  each  point. 

PROBLEMS 

Problem  i.  Compute 
a  —  b 

from  the  following  data: 

Station. 

So- 

Latitude. 

Umanak,  Greenland   
982.59s 

978.057 
+70  40  29 
—00  41   40 

Sawah  Loento,  Sumatra   

Problem  2.     If  the  coincidence  intervals  are  5*"  during  an  8-hour  swing,  what  will 
be  the  error  in  P  due  to  an  error  of  i*  in  noting  the  time  of  a  coincidence? 
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PRECISE  LEVELING  —  TRIGONOMETRIC  LEVELING 

155.   Precise  Leveling. 

The  term  precise  leveling  is  applied  to  the  operation  of  deter- 

mining differences  in  elevation  of  successive  points  on  the  earth's 
surface  with  instruments  and  methods  which,  though  similar  to 
those  used  in  ordinary  leveling,  are  more  refined  and  capable  of 
yielding  a  much  higher  degree  of  precision.  In  order  to  secure 

the  greatest  possible  accuracy,  it  is  necessary  to  modify  our  con- 
ception of  the  nature  of  a  level  surface  and  to  introduce  certain 

corrections  which  are  ordinarily  negligible.  It  should  be  ob- 
served that  since  the  line  of  sight  of  the  instrument  is  always 

theoretically  perpendicular  to  the  direction  of  gravity  at  each 
station,  it  lies  in  a  plane  which  is  tangent  to  the  geoid,  not  to  the 
spheroid.  In  tracing  out  a  level  line  by  means  of  the  spirit  level 
we  are  following  the  curvature  of  the  geoidal  surface. 

The  term  precise  leveling  has  for  many  years  been  applied  to 
all  leveling  of  a  fairly  high  degree  of  precision,  but  there  have 

been  various  limits  of  precision  prescribed  by  the  different  or- 
ganizations carrying  on  the  work.  The  accuracy  obtainable  has 

been  so  greatly  increased  through  recent  developments  in  instru- 
ments and  methods  that  in  191 2  a  new  class  of  leveling,  known  as 

leveling  of  high  precision,  was  established  by  the  International 
Geodetic  Association;  it  is  to  include  every  line,  set  of  lines,  or 
net,  which  is  run  twice  in  opposite  directions,  on  different  dates, 
and  whose  errors,  both  accidental  and  systematic,  computed  in 

accordance  with  formulas  stated  in  the  resolution,*  do  not  exceed 
^jmm.  pgj.  kilometer  for  the  probable  accidental  error  and  ±0.2""" 
per  kilometer  for  the  probable  systematic  error. 

*  See  Coast  Survey  Special  Publication  No.  18,  p.  88.  See  also  Report  of  In- 
ternational Geodetic  Association  for  191 2. 

237 
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Many  different  instruments  have  been  used  in  the  past  for 

precise  leveling,  some  of  the  "wye  "  type  and  some  of  the 
"dumpy "    type.    All   precise   levels,    however,    have   certain 

characteristics  in  common:  namely,  (i)  a  telescope  of  high  mag- 
nifying power,  mounted  on  a  heavy  tripod:  (2)  a  sensitive  spirit 

level;  (3)  a  slow-motion  screw  for  centering  the  bubble;  (4)  stadia 
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wires  for  determining  the  length  of  sight;  and  (5)  a  mirror  or  other 
optical  device  for  viewing  the  bubble  from  the  eye  end  of  the 
telescope.  Before  the  year  1899  the  precise  leveling  of  the  United 
States  Coast  Survey  was  done  with  a  wye  level  and  target  rods. 
The  target  was  not  set  exactly  on  the  level  of  the  instrument,  but 

Fig.  89a.    Precise  Level. 
(C.  L.  Berger  and  Sons.) 

was  set  approximately,  and  corrections  to  this  approximate  read- 
ing were  determined,  using  the  micrometer  screw  to  measure  the 

small  vertical  angles.  Since  1899  *  a  dumpy  level  of  new  design 
has  been  substituted  for  the  wye  level,  the  self-reading  rod 

*  For  a  discussion  of  this  change  in  methods  see  Coast  Survey  Report  for  1899, 
p.  8,  and  for  a  description  of  the  new  instrument  see  Coast  Survey  Report  for  1900, 

p.  521,  and  for  1903,  p.  200. 
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adopted,  and  the  micrometer  screw  used  only  for 

centering  the  bubble.  This  new  instrument  and 

method  have  been  adopted  by  several  other 

branches  of  the  government  service. 

156.  Instrument. 

The  new  instrument,  sometimes  called  the  prism 

level,  is  designed  to  reduce,  so  far  as  possible,  any 
errors  arising  from  unequal  heating  of  the  different 

portions  of  the  instrument.  (Fig.  89.)  The  tele- 
scope barrel  is  made  of  an  alloy  of  iron  and  nickel 

having  a  low  coefficient  of  expansion  (0.000004  per 

1°  C).  The  level  vial  is  set  into  the  telescope  tube 
as  low  as  possible  without  interfering  with  the  cone 

of  rays  from  the  object  glass.  This  diminishes  the 

effect  of  differential  expansion  of  the  parts  support- 
ing the  level.  At  one  side  of  the  telescope  is 

another  (similar)  tube  containing  a  pair  of  prisms 

which,  together  with  a  mirror  mounted  above  the 

telescope,  enable  the  observer  to  view  the  ends  of 

the  bubble  with  the  left  eye  at  the  same  time  that 

he  looks  at  the  rod  with  the  right  eye.  The  arrange- 
ment of  mirror  and  prisms  is  such  that  there  is  no 

parallax  caused  by  the  glass  in  the  level  or  the 
mirror.  The  instrimient  is  provided  with  the  usual 

small  levels  for  the  approximate  leveUng  of  the 
base. 

157.  Rods. 
The  rods  used  are  of  the  non-extensible  type, 

graduated  to  centimeters  and  marked  so  that  they 

may  be  read  directly  by  the  observer  through  the 

telescope,  the  millimeters  being  estimated.  (Fig. 

90.)  The  rods  are  in  the  form  of  a  cross  (in  sec- 
tion) ;  they  are  treated  with  paraffin  to  make  them 

proof  against  moisture.  Metal  plugs  are  inserted 

three  meters  apart  for  verifying  the  length  of  the 
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rod.  Each  rod  has  a  spirit  level  attached,  to  show  when  it 

is  vertical,  and  also  a  thermometer,  which  is  read  at  each 

sight. 
158.  Turning  Points. 

Foot-pins  are  carried  by  all  leveling  parties,  to  be  used  when 
other  turning  points  are  not  available.  These  are  about  one 

foot  long,  with  a  depression  at  the  top  in  which  to  hold  the 

rod.  A  rope  run  through  a  small  hole  is  provided  for  pulling 

up  the  pin.  Most  of  the  leveling  of  the  Coast  Survey  is  carried 

along  railroad  lines,  and  the  top  of  a  rail  is  the  usual  turning 

point. 
159.  Adjustments. 

The  adjustments  of  the  level  are  nearly  the  same  as  those  of 

the  ordinary  dumpy  level.  The  rough  levels  are  adjusted  so  as 

to  remain  in  the  center  when  the  telescope  is  revolved  about  the 

vertical  axis.  The  axis  of  the  long  bubble  tube  is  adjusted 

parallel  to  the  line  of  sight  of  the  telescope  whenever  it  is  much 

in  error.  This  adjustment  is  tested  each  day  by  taking  four 

readings,  like  those  used  in  the  "peg  "  method,  except  that  the 
shorter  sights  are  10  meters  in  length  and  the  longer  sights  are  of 

the  usual  length,  (say  loC").  From  these  four  readings  a  factor 
C  is  computed,  which  is  the  ratio  of  the  correction  for  any  reading 

to  the  corresponding  rod  interval.  The  difference  in  the  sums  of 

the  foresight  and  backsight  at  any  set-up  is  to  be  multiplied  by 
this  factor  C. 

To  find  an  expression  for  C,  call  %  and  W2  the  rod  readings  for 
the  nearer  sights,  and  di  and  (k  the  rod  readings  f©r  the  distant 

sights,  ̂ 1  and  ̂ 2  the  nearer  stadia  intervals,  and  Si  and  52  the  dis- 
tant stadia  intervals,  the  subscripts  referring  to  the  first  and 

second  instrument  positions.  Then  the  true  difference  in  eleva- 

tion from  the  first  set-up  is 

(«i  -f  Csi)  -  {di  +  C5i), 

and  for  the  second  set-up, 

(^   +  CS2)    -    («2   +  C52). 
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Equating  and  solving  for  C, 

{Si  +  52)  -  (^1  +52)  ^      ̂ 

C  is  +  if  the  line  of  sight  is  inclined  downward. 

Below  is  table  showing  a  determination  of  C  (from  Coast  Survey 

Report  for  1903). 

DETERMINATION   OF   C.    8.20  a.m.,   AUGUST   28,    1900 

(Left-hand  page.) (Right-hand  page.) 

Number 
of 

station. 

Thread 
reading, 

backsight. 

Mean. 
Thread 

interval. 
Rod. 

Thread reading, 

foresight. 

Mean. 
Thread 

interval. 

A 

B 

Corr.  fo 

1515 

1528 
1542 

2252 2357 

2462 

1528.3 

2357  0 
0461 .7 

13 

14 
27 

105 
105 

210 
419 

52 

W 

W 

0357 

0462 
0566 1276 

1288 

1301 

0461 . 7 

1288.3 

1528.3 

105 

104 

209 

12 

13 25 

0.004=  c 

2818.7 
2816.6 

2817.9 

rcurv.andr ef.  -0.8 
367 

2817.9 

36 

7)-i.3(- 

If  the  value  of  C  is  less  than  0.005,  the  instrument  should  not 

be  adjusted.  If  between  0.005  ̂ ^^  o.oio,  the  observer  is  advised 

not  to  adjust.  If  over  o.oio,  the  adjustment  should  be  made. 

The  adjustment  is  made  by  moving  the  level  rather  than  the 

cross-hair  ring,  to  avoid  moving  the  Kne  of  sight  from  the  optical 
axis. 

160.   Method  of  Observing.* 

It  is  customary  to  use  two  rods,  the  one  that  is  held  for  a  fore- 
sight on  a  certain  turning  point  being  kept  at  the  same  turning 

point  for  a  back  sight.    The  instrument  is  set  up  and  leveled, 

*  The  General  Instructions  for  Precise  Leveling  will  be  found  in  Coast  Survey 
Special  Publication  No.  22,  p.  29. 
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and  all  three  hairs  are  read  on  the  back  rod,  the  level  being  kept 
central  at  each  reading.  As  soon  as  possible  thereafter  the  three 
hairs  are  read  in  a  similar  manner  on  the  forward  rod.  The 

readings  are  estimated  to  millimeters.  The  temperature  on  the 
rod  thermometer  is  read  at  the  same  time.  The  level  should  be 

shaded  from  the  sun  in  order  to  avoid  unequal  heating  of  its  parts. 
In  selecting  instrument  and  rod  points,  the  observer  must  keep 
the  difference  in  length  of  the  forward  and  backward  sight  less 

than  10  meters  on  any  one  set-up  and  less  than  20  meters  for  the 
accxmiulated  difference  at  any  time.  The  readings  of  the  upper 
and  lower  (stadia)  wires  enable  the  recorder  to  determine  the 

difference  in  distance  at  each  set-up.  The  maximum  length  of 

sight  allowable  is  1 50™,  a  distance  reached  only  under  exception- 
ally favorable  conditions.  At  odd-numbered  stations  the  back 

sight  is  taken  first;  at  even-numbered  stations  the  fore  sight  is 
taken  first.  This  results  in  the  same  rod  being  read  first  each 
time. 

Lines  between  bench  marks  are  divided  into  sections  of  from 

one  to  two  kilometers  each.  Each  of  these  sections  is  run  for- 
ward and  backward.  If  the  two  differences  in  elevation  so  de- 

termined are  found  to  differ  by  more  than  4"""  Vx  {K  =  kilo- 
meters), both  runnings  must  be  repeated  until  such  a  check  is 

obtained.  Lines  may  be  run  with  such  care  that  it  is  seldom 
necessary  to  repeat,  but  the  maximum  economy  appears  to  be 

reached  when  from  5  to  15  per  cent  of  the  sections  have  to  be  re- 
run. 

On  page  244  is  a  set  of  notes  used  in  leveling  with  this  in- 
strument (Coast  Survey  Report,  1903). 

The  most  recent  practice  is  to  record  the  readings  directly  on 
adding  machines  carried  with  the  leveling  outfit.  This  results 
in  a  saving  of  time  and  in  avoiding  many  mistakes  in  recording 
and  adding. 

161.   Computing  the  Results. 

In  computing  the  results  of  precise  leveKng,  corrections  are 
appUed  for  the  nonadjustment  of  the  level,  for  curvature  and 
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refraction,  for  error  in  length  of  rod,  for  error  due  to  temperature 

of  rod,  and  for  the  orthometric  correction.  The  curvature  and 

refraction  corrections  are  usually  taken  from  tables  (Coast  Survey 

Report,  1903).  The  length  of  rod  is  tested  at  the  office  at  the  be- 
ginning and  end  of  the  season,  and  variations  during  the  season 

are  tested  in  the  field  by  means  of  a  steel  tape.  The  temperature 

correction  is  derived  from  tables,  the  argument  being  the  ob- 
served temperatures. 

SPIRIT  LEVELING 

(Left-hand  page.) (Right-hand  page.) 

Date: August  29,  1900. From  B.M. :68. To  B.M. :G 
Sun :  C. Forward.       Backward. Wind :  S.T 

(Strike  out  one  word.) 

Thread Thread 

No.  of 
station. 

read- 
Thread Sum  of Rod 

read- 

Thread Sum  of ing, 
Mean.     [ 

inter- inter- 

and 

ing 

Mean. 

inter- inter- back- 
val. 

vals. 
temp. 

fore- 

val. vals. 

sight. sight. 

43 

0674 

99 V 

2683 

99 0773 

0773.0 
99 

38 

2782 

2782.3 100 

0872 198 2882 

199 

0925 
106 W 

2415 

103 

44 
103 1 1030.3 

104 

35 
2518 

2518.0 

103 

113s 

210 

408 

2621 206 
405 

0484 

98 

V 

2510 

96 

45 
0582 

0582.3 99 35 2606 2606.0 

96 

0681 

197 

605 

2702 

192 597 

0398 
97 

W 

2859 

96 

46 

0495 

0495  0 
97 

34 

2955 

2954 -7 95 
0592 

194 

799 

3050 

191 

788 

1027 
26 V 1006 

29 

47 

IOS3 
IOS3-3 

27 

34 

1035 

1034-7 

28 
1080 

3933-9 

53 852 

1063 

11895-7 

-7961.8 2  : 57 

25  P.M. 

845 
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162.  Bench  Marks. 

The  bench  marks  used  in  precise  leveling  are  of  various  types. 

Wherever  it  is  practicable,  the  metallic  plates  shown  in  Fig.  91 

are  used  to  mark  the  points,  but  nearly  all  of  the  kinds  of  bench 

marks  which  are  used  by  engineers  are  used  also  in  this  class  of 
work.  The  distance  between  benches  is  not  allowed  to  exceed 

15  kilometers;  every  100  kilometer  section  should  have  at  least 

20  bench  marks,  a  good  average  distance  being  2.5  kilometers. 

In  cities  the  old  bench  marks  are  often  utilized  for  the  precise 
levels. 

163.  Sources  of  Error. 

The  sources  of  error  which  it  is  particularly  necessary  to  study 

in  this  class  of  work  are  (i)  unequal  effects  of  temperature  changes 

in  the  instrument,  (2)  gradual  rising  or  settHng  of  the  instrument 

or  rods,  (3)  variations  in  refraction  of  the  air,  (4)  unequal  lengths 

of  sights,  (5)  errors  in  length  and  temperature  of  rod,  and  (6) 
convergence  of  level  surfaces. 

TABLE  H.  — TOTAL  CORRECTION  FOR  CURVATURE 
AND  REFRACTION 

Correction  to  rod Correction  to  rod 
Distance. Distance. 

reading. reading. 

m.            m. mm. m. 
mm. 0  to    27 0.0 160 

-1.8 

28  to    47 

—O.I 

170 

—  2.1 

48  to    60 

—  0.2 

180 

-2.3 

61  to    72 

-0-3 

190 

-2.6 

73  to    81 

-0.4 

200 

-2.8 

82  to    90 

-0.5 

210 

-3-0 

91  to    98 

-0.6 

220 

-3-3 

99  to  105 

-0.7 

230 

-3-7 

106  to  112 

-0.8 

240 

-4.0 

113  to  118 

-0.9 

250 

-4-3 

119  to  124 

—  1 .0 

260 

-4-7 

125  to  130 

—  1 .1 

270 

-S-o 

131  to  136 

—  1.2 

280 

-5-4 

137  to  141 

-1-3 

290 

-S.8 

142  to  146 

-1.4 

300 

-6.2 

147  to  150 

-i-S 
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TABLE   I.  —  DIFFERENTIAL   CORRECTION    FOR   CURVA- 
TURE AND  REFRACTION 

Mean 
length 
of  sight 
in  rod 

interval 

in  milli- 
meters. 

Difference  of  sights  in  rod  interval  in  millimeters. 

2 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

4 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 .0 

.0 

.0 

.0 

.0 

.0 

.0 .0 

.0 

.0 

.0 

.0 

.0 

.0 .0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 .0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

6 

.0 

.0 

.0 

.0 .0 

.0 

.0 

.0 

.0 .0 

.0 

.0 

.0 .0 

.0 

.0 

.0 

.0 .0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 .0 

.0 

.0 

.0 .0 

.0 

.0 

.0 .0 

.0 ^ 

.1 

8 

.0 .0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 .0 

.0 .0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 .0 

.0 

.0 

.0 

.0 

.0 .0 

.0 

.0 .0 

.0 

.0 

.0 

.0 

.0 

.1 

.1 

.1 

10 

.0 

.0 

.0 

.0 

.0 

.0 .0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 0 

.0 .0 

.0 

.0 .0 

.0 

.0 

.0 .0 

.0 

.0 .0 

.0 

,0 

.0 

.0 .0 

12 

.0 

.0 

.0 

.0 

.0 

.0 

.0 .0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 .0 

.0 .0 

.0 

.0 

.0 .0 

.0 .0 

.0 

,0 

14 

.0 

.0 .0 

.0 

.0 .0 

.0 

.0 

.0 

.0 

.0 

.0 .0 

.0 

.0 

.0 

.0 .0 

.0 

.0 

.0 

.0 

16 

.0 

.0 

.0 

.0 

.0 

.0 

.0 .0 

.0 

,0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

18 

.0 .0 

.0 

.0 

.0 .0 

.0 

.0 

.0 

.0 

.0 

.0 .0 

.0 

.0 

.0 

.0 

20 

.0 

.0 .0 

.0 

,0 

.0 .0 

.0 

.0 

.0 

.0 

.0 

,0 

.0 

.0 

.2 

22 

.0 .0 

.0 

.0 

.0 

.0 

.0 .0 

.0 

.0 .0 

.0 

I 

.2 

24 

.0 

.0 .0 

.0 

.0 

.0 

.0 .0 

.0 

.0 .0 

.2 

.2 

.2 

26 

.0 

.0 

.6 

.0 .0 

.0 

.0 

.0 

.0 
0 

.2 

.2 

.2 

28 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 .0 

.2 

.2 

.2 

.2 

30 

.0 

.0 

.0 

.0 

.0 

.0 

,0 

.0 

32 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

34 

.0 

.0 

.0 

.0 

.0 

.0 

36 

.0 

.0 

.0 

.0 

.0 

.0 

38 

.0 

.0 .0 

.0 

.0 40 

.0 

.0 

.0 

.0 

.0 

4 

.0 

.0 

.0 

44 

.0 

.0 

.0 

46 

.0 

.0 

.0 

48 
.0 

.0 

so 

.0 

.0 

52 

.0 

S4 

.0 

S6 
S8 

10 

20 

30 

40 
SO 

60 

70 

80 

90 

100 

no 

120 

130 

140 

ISO 

160 

170 
180 

190 
200 

210 

220 

230 

240 
250 

260 

270 

280 

290 

300 

310 

320 

330 

340 
350 

360 

400 
440 

480 

520 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

•  3 

■  3 

3 

■  3 

.3 
•  3 

•  3 

3 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

^ 

.3 
•  3 

•  3 

.3 
•  3 

.3 

.3 

■  4 

■  4 .4 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 
3 

3 

3 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

-3 

■  3 
.3 

.3 

•  3 

■ 

-; 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

,2 
.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.? 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 
3 

.3 

3 

•4 

; 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.1 

.2 

.2 

,2 
.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 .2 

.2 

■ 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 .2 

.2 

.2 

r^ 

.3
 

; 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

■  3 
•  3 

.3 

.3 
■  3 

.3 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

.2 

3 

.3 

.3 

.3 

■3 

.3 

.3 

3 

3 

•3 

3 

3 

.3 

3 

■3 
■3 

.3 

.3 

3 

3 

.3 

4 

.4 
•4 

.4 

.4 

.4 

•4 

.4 

•  4 

.4 

■4 

•  4 

3 

■  3 
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TABLE  J.  —  CORRECTION  FOR  TEMPERATURE   (IN 
MILLIMETERS) 

, 
Difference  of  elevation in  meters. 

Temp.  C. 
I 2 3 4 s 6 7 8 9 10 

II 

12 

13 
14 

I 0.0 0.0 0.0 0.0 
0.0 

0.0 0.0 0.0 0.0 0.0 

0.0 0.0 

0.0 O.I 

2 0.0 
0.0 

0.0 0.0 0.0 0.0 O.I 
O.I 0.1 

0.1 

0.1 

0.1 

0.1 

O.I 

3 0.0 0.0 0.0 0.0 0.1 0.1 O.I O.I 
0.1 

0.1 
0.1 0.1 

0.2 0.2 

4 0.0 
0.0 

0.0 O.I 0.1 0.1 
O.I 

0.1 
0.1 

0.2 
0.2 0.2 

0.2 

0.2 

5 0.0 0.0 0.1 
0.1 

0.1 0.1 O.I 0.2 0.2 0.2 0.2 0.2 

0.3 0.3 

6 0.0 0.0 0.1 O.I 
0.1 

0.1 0.2 0.2 0.2 0.2 

0-3 

0.3 
0-3 0.3 

7 0.0 
0.1 0.1 O.I 

0.1 

0.? 

0.2 0.2 0.2 

0.3 
0-3 

0-3 

0.4 

0.4 

8 0.0 0.1 0.1 O.I 0.2 0.2 0.2 

0-3 
0.3 

0.3 
0-4 

0.4 
0.4 0.4 

9 0.0 0.1 0.1 O.I 0.2 6.2 0.2 

0.3 
0.3 0.4 

0.4 

0.4 

o.S 
O-S 

10 0.0 0.1 0.1 0.2 
0.2 0.2 

0.3 
0-3 0.4 

0.4 
0.4 

OS o.S 

0.6 

II 0.0 0.1 
0.1 

0.2 
0.2 

03 
0-3 0.4 

0.4 
0.4 

o.S 
o-S 

0.6 0.6 

12 
0.0 0.1 0.1 0.2 0.2 

0.3 0.3 

0.4 0.4 

0.5 

o-S 

0.6 
0.6 

0.7 

13 

0.0 
0.1 

0.2 0.2 

0-3 03 0.4 
0.4 

O-S 
o-S 

0.6 0.6 

0.7 
0.7 

14 

0.1 0.1 0.2 0.2 

03 0.3 0.4 

0.4 

o.S 

0.6 
0.6 

0.7 

0.7 

0.8 

15 

0.1 0.1 
0.2 

0.2 

0.3 
0.4 0.4 

o.S 
0.5 

0.6 

0.7 

0.7 

0.8 0.8 

16 
0.1 0.1 0.2 

03 
0.3 

0.4 
0.4 

o.S 

0.6 
0.6 

0.7 

0.8 0.8 

0.9 

17 

0.1 
0.1 0.2 

0.3 

03 
0.4 

05 
0.5 

0.6 

0.7 

0.8 0.8 

0.9 
0.9 

18 0.1 0.1 0.2 

0.3 0.4 
0.4 

0-5 

0.6 
0.6 

0.7 

0.8 

0.9 0-9 

1 .0 

19 

0.1 
0.2 0.2 

0.3 
0.4 

0-5 o-S 

0.6 

0.7 

0.8 0.8 

0.9 

1 .0 1 .1 

20 0.1 0.2 0.2 

0-3 0.4 

o-S 

0.6 
0.6 

0.7 

0.8 

0-9 

1 .0 
1 .0 

1 .1 

21 
0.1 0.2 0.2 

0.3 
0.4 

0.5 

0.6 

0.7 

0.8 0.8 

0-9 

1 .0 1 .1 1 .2 

22 0.1 0.2 

0.3 0.4 

■0.4 

0-5 

0.6 

0.7 

0.8 

0.9 

1 .0 1 .1 
1 .1 1 .2 

23 

0.1 0.2 

0.3 0.4 
0-5 

0.6 0.6 

0.7 

0.8 

0.9 

1 .0 1 .1 
1 .2 

1-3 

24 

0.1 0.2 

0.3 
0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 .0 1 .1 1 .2 
1 .2 

1-3 

25 

0.1 0.2 

0.3 0.4 

0-5 

0.6 

0.7 

0.8 

0.9 

1 .0 1 .1 
1 .2 

1-3 
1-4 

26 0.1 0.2 

0.3 0.4 

o.S 

0.6 

0.7 

0.8 

0.9 

1 .0 1 .1 
1 .2 

1-3 
I-S 

27 

0.1 
0.2 

03 0.4 

0-5 

0.6 0.8 

0.9 

1 .0 1 .1 1 .2 

1-3 
1-4 

I-S 

28 0.1 0.2 

0-3 0.4 

0.6 

0.7 

0.8 

0.9 

1 .0 1 .1 1 .2 

1-3 

1.4 

1.6 

29 

0.1 
0.2 

0.4 

o-S 

0.6 

0.7 

0.8 

0.9 

1 .0 1 .2 

1-3 

1-4 

1-5 

1.6 

30 

0.1 0.2 

0.4 

0.5 

0.6 

,  0-7 

0.8 
1 .0 1 .1 1 .2 

1-3 1-4 

1.6 

1-7 

31 

0.1 
0.2 

0.4 

0-5 

0.6 

0.7 

09 

1 .0 1 .1 
1 .2 

1-4 

I-S 

1.6 

1-7 

32 

0.1 

0.3 0.4 

0.5 

0.6 0.8 

0.9 

1 .0 
1 .2 

1-3 
1-4 

I-S 1-7 

1.8 

33 0.1 

0.3 0.4 

0-5 0.7 

0.8 

0.9 

1 .1 1 .2 

1-3 1-4 

1.6 

1-7 

1.8 

34 
0.1 

0-3 0.4 
o-S 0.7 

0.8 
1 .0 

I.I 1 .2 

1-4 

1-5 

1.6 1.8 

1-9 

35 0.1 

03 0.4 

0.6 

0.7 

0.8 1 .0 1 .1 

1-3 1-4 

I-S 1-7 

1.8 2.0 

36 

0.1 

0.3 0.4 

0.6 

0.7 

0.9 

1 .0 
1 .2 

1-3 

I.  A 
1.6 

1-7 

1-9 

2.0 

37 
0.1 

0-3 0.4 

0.6 

0.7 

0.9 

1 .0 
1 .2 

1-3 
I-S 

1.6 1.8 

1-9 

2.1 

38 

0.1 

0.3 
0-5 

0.6 0.8 

0.9 

1 .1 
1 .2 

1-4 

I-S 1-7 

1.8 2.0 

2.1 

39 
0.2 

0.3 0.5 

0.6 
0.8 

0.9 

1 .1 1 .2 

1-4 

1.6 

1-7 
1-9 

2.0 2  .2 

40 

0.2 

0.3 
0.5 

0.6 
0.8 1 .0 1 .1 

1-3 1-4 

1.6 

1.8 

1-9 

2.1 

2.2 

41 

0.2 

0.3 
o.S 

0.7 

0.8 1 .0 1 .1 

1-3 i-S 

1.6 1.8 2.0 2.1 

2.3 

42 

0.2 

0.3 
o-S 

0.7 

0.8 1 .0 
1 .2 

1-3 
i-S 1-7 

1.8 2.0 2.2 

2.3 

43 0.2 

0.3 
0.5 

0.7 

0.9 

1 .0 1 .2 

1-4 
i-S 

1-7 
1-9 

2.1 2.2 

2.4 

44 0.2 

0-3 0.5 
0.7 

0.9 

1 .1 1 .2 

1-4 

1.6 1.8 

1-9 

2.1 

2-3 2-5 

45 
0.2 

0.3 
o-S 0.7 

0.9 

1 .1 

1-3 
1-4 

1.6 1.8 2.0 2.2 

2-3 
2-5 
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164.  Datum. 

The  datum  for  precise  levels  is  mean  sea-level,  or  the  surface 
of  the  geoid,  as  found  from  tidal  observations.  This  is  assumed 

to  be  correctly  given  by  the  mean  of  the  several  "annual  means  " 
as  derived  from  tidal  observations  for  sea-level.  The  heights  of 
the  tide  are  recorded  automatically  on  a  self-registering  gauge. 
(See  Cut.)     The  vertical  motion  of  the  float  is  reduced  (the  ratio 

Fig.  91a.     Self -Registering  Tide  Gauge. 
(Coast  and  Geodetic  Survey,) 

depending  upon  the  range  of  tide)  by  passing  the  connecting 
wire  and  cord  over  a  series  of  pulleys,  and  is  communicated  to  a 
recording  pencil  which  marks  on  a  sheet  of  paper  passing  over  a 
revolving  drum.  The  drum  is  revolved  at  a  uniform  rate  by 
clock  mechanism.  The  height  of  the  water  is  referred  to  a  bench 

mark  in  the  vicinity.     Observations  of  the  tide  should  be  ex- 
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tended  over  a  period  of  at  least  one  year  in  order  to  determine 

sea-level  with  sufficient  precision  for  this  class  of  leveUng.  In  the 
tidal  records  at  some  stations  there  appear  to  be  small  systematic 

variations  in  the  annual  means  extending  over  periods  of  several 
years;  but,  taking  the  records  as  a  whole,  the  variations  do  not 

seem  to  follow  any  particular  law,  and  they  are  treated  as  acci- 
dental.    (See  Coast  Survey  Special  Publication  No.  26.) 

165.  Potential. 

In  order  to  investigate  the  nature  of  the  orthometric  correction, 

due  to  the  convergence  of  level  surfaces,  it  will  be  necessary  to 

consider  first  some  of  the  elementary  mechanical  principles  of  the 

earth's  gravitation  and  rotation. 
Whenever  two  attracting  bodies  are  separated,  work  is  done 

upon  them  and  energy  is  stored  up;  that  is,  the  potential  energy 

of  the  system  is  increased.  The  change  in  potential  energy  is 

measured  by  the  amount  of  work  done.  When  the  bodies  are 

an  infinite  distance  apart,  the  potential  energy  is  a  maximum; 

when  the  bodies  are  in  contact,  the  potential  energy  of  the  system 

is  zero.  If  the  masses  are  free  to  move,  they  will  always  move 

in  such  a  direction  as  to  diminish  the  potential  energy  of  the 

system. 
If  we  imagine  a  unit  mass  placed  at  any  point  P  in  space  and 

attracted  by  a  mass  M,  and  if  the  potential  energy  of  the  unit 

mass  be  measured  by  the  work  done  upon  it  to  move  it  from  P  to 

infinity,  this  quantity  of  potential  energy  is  a  property  of  the 

given  point  P;  in  other  words,  it  is  a  function  of  the  coordinates 

of  P.  It  is  called  the  potential  at  that  point.  It  is  not  necessary 

that  there  should  actually  be  a  unit  mass  at  the  point,  but  the 

conditions  are  such  that  if  a  unit  mass  were  placed  at  P,  it  would 

have  this  amount  of  potential  energy.  It  should  be  observed 

that  the  increase  of  potential  energy  is  measured  by  the  fall  in 

potential. 
166.  The  Potential  Function. 

If  an  attracting  body  M  be  divided  into  small  elements,  and 

the  mass  Am  of  each  element  be  divided  by  its  distance  from  a 
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point  P,  the  limit  of  the  sum  of  all  these  fractions,  as  the  elements 
are  made  smaller,  is  called  the  value  at  P  of  the  potential  function 
due  to  M,  or  simply  the  potential  of  P.  Calling  this  function  V , 
then 

F  =  limit^=oX   '  t"7] 

or,  if  Aw  is  of  density  5  and  has  the  coordinates  x' ,  y\  z',  and  P 
has  the  coordinates  x,  y,  z,  then 

J  J  J  [{x'  -xY  +  (y'  -  yf  +  iz'  -  zf]^ 

The  integration  over  the  entire  mass  gives  the  value  of  the  po- 
tential function  at  P.* 

167.  The  Potential  Function  as  a  Measure  of  Work  Done. 

The  amount  of  work  required  to  move  a  unit  mass  (concen- 
trated at  a  point)  from  a  point  Pi  to  another  point  P2,  by  any 

path  (Fig.  92),  against  the  attraction  of  a  mass  M,  is  equal  to  the 

fall  in  potential  Fi  —  F2,  where  V\  and  V2  are  the  values  of  the 
potential  function  at  the  points  Pi  and  P2.  To  show  this,  let  ri 
and  ro  be  the  distances  from  the  center  of  M  to  the  points  Pi  and 

e — '-^ — ' Fig.  92. 

The  work  done  in  moving  a  unit  mass  through  a  small  space  dr 

equals  the  force  [-^J  times  the  space  dr.     But  the  force  ( — )  at 

any  point  A  equals  —  —  at  that  point,  since  V  (for  a  unit  mass) 

=  - .    Hence  the  work r 

=  -X'f  •  * = ^'  -  ̂'^        [""1 that  is,  the  work  done  equals  the  fall  in  potential. 

*  See  Pdrce,  Theory  of  the  Newtonian  Potential  Function. 
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If  the  point  P2  is  moved  to  an  infinite  distance,  F2  become  zero, 

and  the  potential  at  Pi  then  equals  the  work  done  in  moving  the 

unit  mass  from  Pi  to  infinity;  or  it  is  the  work  done  by  it  in 

moving  from  infinity  to  the  point  Pi. 

168.  Equipotential  Surfaces. 

A  level  surface,  or  an  equipotential  surface,  is  one  having  at 

every  point  the  same  gravity  potential.  It  is  everywhere  per- 

pendicular to  the  direction  of  gravity.*  The  mean  surface  of 
the  ocean  is  such  a  surface.  The  surface  of  any  lake  is  also  an 

equipotential  surface.  From  the  proof  given  in  the  preceding 

article  it  is  evident  that  if  there  are  two  such  equipotential  sur- 
faces, the  difference  in  potential  is  the  work  done  upon  a  unit 

mass  in  moving  it  from  one  surface  to  the  other.  This  difference 

in  potential  is  independent  of  any  particular  points  on  the  sur- 
faces and  of  the  path  followed  in  passing  from  one  to  the  other; 

for  example,  the  work  done  in  raising  a  unit  mass  from  sea-level 
to  the  south  end  of  a  lake  is  the  same  as  the  work  done  in  raising 

a  unit  mass  from  sea-level  to  the  north  end  of  the  lake.  Since 

the  work  done  is  the  force  (w)  times  the  distance  (dh)  through 

which  it  acts,  it  is  evident  that  w  x  dhisa,  constant  between  two 

^  level  surfaces.  Also,  since  g  varies  as  the  weight  (force),  g  X  dh 
is  a  constant  between  these  two  surfaces. 

The  force  of  gravity  is  less  at  the  equator  (Art.  144)  than  at  the 

poles,  on  account  of  the  action  of  the  centrifugal  force.  Hence 

we  should  expect  to  find  that  a  given  level  surface  is  farther  from 

sea-level  at  the  equator  than  it  is  at  a  point  nearer  the  pole.  If 
several  such  surfaces  be  drawn  (Fig.  93),  they  will  be  seen  to 

converge  toward  the  pole.  They  are  all  parallel  to  each  other 

at  the  equator  and  at  the  poles,  and  have  their  greatest  difference 

in  direction  at  <^  =  45°. 
Since  g  is  about  one-half  of  one  per  cent  less  at  the  equator  than 

*  It  may  be  proved  that  if  there  is  a  resultant  force  at  a  point  in  space  due  to 
attracting  masses,  this  force  acts  in  the  direction  of  the  normal  to  the  equipotential 
surface  through  the  point  (see  Peirce,  Theory  of  the  Newtonian  Potential  Function, 

p. .38).  It  should  be  kept  in  mind  that  the  "  force  of  gravity"  is  the  resultant  of 
the  force  of  attraction  and  the  centrifugal  force. 
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at  the  pole,  the  height  h  between  surfaces  is  about  one-half  of  one 
per  cent  greater  at  the  equator.  Hence,  if  a  level  surface  were 

1000  meters  above  the  sea-surface  at  the  equator,  it  would  be 

only  995  meters  above  sea-level  at  the  pole.  A  surface  at  half 
the  elevation  would  converge  (very  nearly)  half  as  much.  In  the 

line  of  levels  run  from  San  Diego  to  Seattle  the  convergence  was 

found  to  be  about  i^  meters,  showing  that  at  high  elevations  this 

error  is  by  no  means  a  neghgible  one  in  precise  leveling. 

Fig.  93. 

It  is  evident  that  if  a  series  of  bench  marks  is  established  along 

a  meridian  (in  the  northern  hemisphere),  and  all  are  placed  at 

the  same  elevation,  using  the  ordinary  methods,  those  at  the 

northern  end  of  the  line  lie  nearer  to  sea-level  than  those  at  the 

southern  end  of  the  Une.  It  becomes  necessary,  then,  to  revise 
the  definition  of  elevation. 

If  the  ordinary  definition  of  elevation  is  retained,  and  no  allow- 
ance made  for  convergence  of  level  surfaces,  then  different  results 

for  the  elevation  of  a  point  will  be  obtained,  according  to  which 

path  is  followed.  If  we  measure  vertically  upward  from  A  to  B 

(Fig.  94),  and  then  level  by  means  of  the  water  surface  BC,  we 

obtain  a  greater  height  for  point  C  than  we  should  if  we  leveled 

by  water  from  A  to  D  and  then  measured  vertically  upward  from 

D  to  C.  If  a  correction  is  applied,  however,  to  allow  for  the  con- 
vergences of  these  surfaces,  the  result  is  that  different  portions 
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of  the  lake  surface  have  different  elevations,  which  is  apparently 
absurd  if  the  true  nature  of  the  level  surface  is  not  understood. 

In  order  to  avoid  this  apparent  difficulty  another  method  some- 
times employed  is  to  number  all  the  surfaces  with  a  serial  number 

(called  the  Dynamic  Number),  so  that  all  points  on  the  same 

surface  will  have  their  elevation  expressed  by  the  same  number. 

This  number  is  defined  as  the  work  required  to  raise  one  kilogram 

from  sea-level  to  the  given  surface,  the  unit  being  the  kilogram- 

FlG.  94. 

meter  at  sea-level  in  latitude  45°.  The  United  States  Coast 
Survey  has  adopted  the  method  of  applying  to  ordinary  elevations 
the  correction  for  convergence,  called  the  Orthometric  Correction. 

The  Standard  Elevations  of  the  Coast  Survey  in  Special  Pub- 
lication No.  18  are  given  by  the  Orthometric  Elevation. 

169.  The  Orthometric  Correction. 

Let  W  be  the  work  (in  absolute  units)  required  to  raise  a  unit 

mass  from  sea-level  to  a  point  at  elevation  h,  and  let  H  be  the 
dynamic  number  of  the  surface  through  the  point,  defined  by  the 

quotient  W  -r-  ̂ 45,  where  ̂ 45  is  the  value  of  g  at  sea-level  in 

latitude  45°  (Equa.  [96a],  p.  210).  Then,  since  g  X  dhis  constant 
for  two  level  surfaces  separated  by  height  dh, 

W 
Jr*h

  nh '    gdh  =  g45  j    (i  —  o.cx)2644  cos  2  </)  .  .  .  ) 
0  t/O 

dh 

in  which  the  integration  takes  place  along  the  curved  vertical. 
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Integrating,   W  =  g^Aii  —  0.002644  cos  2  <j))  h  ...      .    [120] 

The  dynamic  number 

g45 

0.002644  COS  2  (f) 

). 

[121] 

To  find  the  correction  to  the  elevation  due  to  a  change  in  the 

latitude,  differentiate  the  last  equation  with  respect  to  0  as  the 

independent  variable,  and  we  obtain 

o  =  dh  —  0.002644  {—  2  h  sin  2  <f>d<t>  -{■  cos  2  <l>  dh  .  .  .  ) 

=  dh{i  —  0.002644  cos  2  0)  -f  0.005288  hsm2<t)  d^, 

and  dh  =  — 
0.005288  /?  sin  2  0  dcj) 

[122] 
I  —  0.002644  cos  2  0 

=  —(0.005388/? sin  2  0)  (1+0.002644  cos  2  0  .  .  .  )^0arci',*  [123] 

the  factor  arc  i'  being  introduced  to  reduce  c?0  to  minutes  of  arc. 
A  more  definite  idea  of  the  magnitude  of  this  correction  may 

be  gained  from  the  following  example.  Assuming  that  the  ele- 
vation of  Lake  Michigan  is  177  meters  at  Chicago,  latitude 

41°  53',  what  is  the  elevation  of  the  lake  at  Milwaukee,  in  latitude 

43°  03'?  Ill  the  formula,  h  =  177™,  dtf)  =  70',  and  0  =  42°  28'; 
the  computed  values  of  dh  is  —  0.0190",  and  the  lake  level  at  Mil- 

waukee is  therefore  176.9810  meters.  Tables  for  computing  the 

orthometric  correction  will  be  found  in  Coast  Survey  Special 

Publication  No.  18,  pp.  54-56. 
The  relation  between  the  dynamic  numbers  and  the  ortho- 

metric  elevations  is  illustrated  in  the  following  table,  which  is  an 

extract  from  the  special  pubUcation  just  mentioned. 

Station. Latitude. Orth.  elev  meters. Dyn.  number. 

Smithland,  La   30  55 

32  22 39  23 

34  20 
35  13 

14.7729 104.9494 

494.9221 

I I 65. 4345 

2216.5452 

14.7545 

104.8292 

494.6287 I 164. 1008 

2213. 8112 

Meridian,  Miss   ,   
Amblersburg,  W.  Va   
Summit,  Cal   
Riordan,  Ariz   

*  For  additional  terms,  neglected  in  the  above  formula,  see  Coast  and  Geodetic 
Survey  Sp>ecial  Publication  No.  18,  p.  49.  See  also  Ch.  Lallemand,  Nivellement 
ie  Haute  Precision,  Encyclopedic  des  Travaux  Publics,  Paris,  1912. 
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170.  The  Curved  Vertical. 

In  view  of  what  has  been  said  regarding  the  change  in  the 

direction  of  level  surfaces  with  an  increase  in  elevation,  it  is  clear 

•that  the  vertical  line  is  curved,  being  concave  toward  the  pole, 
and  therefore  that  any  observation  for  latitude  made  at  a  point 

above  sea-level  is  referred,  not  to  the  true  normal  to  the  surface 

at  sea-level,  but  to  the  direction  of  that  portion  of  the  vertical 
which  is  at  the  elevation  {h)  of  the  station.  In  order  to  deter- 

mine the  amount  of  the  correction  to  reduce  the  observed  latitude 

Corr.N 

rk^
 

p'
 

^^'
^^ 

1f\ 
"v     \ 

\f 

p 

r 
\ (7 Fig.  95. 

to  its  value  at  sea-level,  refer  again  to  Equa.  [122],  p.  255.  An 
inspection  will  show  that  the  denominator  of  this  fraction  is 

usually  not  far  from  unity;  and  since  the  correction  desired  is 

itself  quite  small,  we  may  assume 

dh  =  —  0.005288  /f  sin  2  <^  d4>.  [124] 
The  correction  to  the  observed  latitude  is  the  difference  in  the 

slope  of  the  two  surfaces  (sea-level  and  the  level  of  station) 
measured  in  the  plane  of  the  meridian.  From  Fig.  95  it  is  seen 

that  the  angle  between  the  level  surface  through  S  and  a  surface 

parallel  to  sea-level  drawn  through  S  is  dh  ̂   Rd  0.  But,  by 
Equa.  [124], 

dh    _      0.005288/;  sin  2  0 

Rd<t>~  ~  R 
Reducing  this  to  seconds  of  arc, 

dh    _  _  0.005288 /g  sin  2  (f> 

Rd<}>~  RsiTci" 
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Since  R  arc  i"  =  101.3  feet  (very  nearly),  the  correction  to  the 
latitude  may  be  written 

—  o'^oS2  2  h  sin  2  </>,  [125] 
where  h  is  in  thousands  of  feet;  or,  if  h  is  in  meters,  the  correction  is 

—  0.000171  h  sin  2  (f).  [126] 

171.  Trigonometric  Leveling. 

The  method  of  measuring  the  vertical  angles  between  triangu- 

lation  stations  has  already  been  described  in  the  chapter  on  field- 
work.  From  the  field  note-book  we  have  the  several  measures 

of  the  angles,  the  height  of  the  instrument,  and  also  of  the  point 

sighted  in  each  case  above  the  station  marks.  The  elevation  of 

one  station  above  sea-level  is  assumed  to  be  known,  and  that  of 
the  other  is  to  be  computed.  Before  this  can  be  done,  the  angle 
must  be  reduced  to  the  value  it  would  have  if  the  instriunent  and 

the  point  sighted  were  coincident  with  the  station  marks. 

172.  Reduction  to  Station  Mark. 

From  the  diagram  (Fig.  96)  it  is  evident  that  if  i  is  the  height 

of  the  instrument  at  A ,  and  0  that  of  the  object  sighted  at  B,  and 

Fig.  96. 

s  the  distance  between  stations,  obtained  from  the  triangulation, 

then  the  correction  to  the  vertical  angle  at  A  is 

Corr.  =  - 

[127] 

5  arc  I 

Four  places  in  the  logarithms  are  sufficient  in  computing  this 
correction. 
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This  reduction  need  be  made  only  in  case  of  reciprocal  obser- 
vations, that  is,  observations  of  the  vertical  angle  from  both  ends 

of  the  line.  In  case  of  observations  from  one  station  only,  the 

quantity  i  —  0,  in  meters,  can  be  applied  directly  to  the  com- 
puted difference  in  elevation. 

When  a  sight  is  taken  from  one  station  Pi  to  another  station 
Pi,  the  verticals  of  the  two  stations  do  not  (in  general)  intersect, 
because  they  lie  in  different  planes.  If  we  imagine  a  plane  which 
is  parallel  to  both  verticals,  and  then  project  both  verticals  onto 
this  plane,  we  obtain  the  result  shown  in  Fig.  97. 

Fig.  97. 

173.  Reciprocal  Observations  of  Zenith  Distances. 
In  Fig.  97,  Pi  and  P^  represent  the  two  instrument  stations; 

their  elevations  above  sea-level  are  PiSi  =  h  and  P2S1  =  h- 
The  ray  of  light  is  assumed  to  take  the  form  of  a  circular  curve. 
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whose  radius  is  determined  by  the  coefficient  used  in  the  calcu- 
lation.    The  two  measured  zenith  distances  are  fi  and  ̂ 2- 

The  angle  of  refraction  is  Af  =  TPiP^  =  TPiPi  =  me, 
where  m  is  the  coefficient  of  refraction,  and  d  the  central  angle 

P1OP2.  The  radius  of  curvature  of  the  section  S1S2  is  Ra,  ap- 

proximately equal  to  OSi,  or  to  06*2. 
The  quantity  to  be  computed  is  the  difference  in  elevation 

h  —  hi,  which  may  be  found  by  solving  the  triangle  P1P2L2* 

In  the  triangle  PiP2-£^,  P2L2  =  Ih  —  h,  the  desired  difference 
in  elevation;  P1L2  is  the  chord  joining  the  two  verticals  at  the 

level  surface   through  Pi.     Observing   that  PiM  =  {R„  -\-  hi) 
6  6 

sin  - ,  and  P1L2  =  2  (R^  +  h)  sin  - ,  we  have,  by  applying  the 2  2 

law  of  sines, 

h2-hi  =  2iR^+  hi)  sin-^  X  '-H§§74-  (e) 2      sm  {P1P2L2) 

But  in  the  triangle  P1L2P2 

P2P1L2  =  P1L2O  -  P1P2L2 

=  (90°  -  ̂)  -  (180°  -  r2  -  Ar) 

= -9o°---Fr2  +  Ar.  (/) 2 

Also,  ^2^1^:2  =  180°  -  r^i  +  Ar  -f-  90°  -  -1 

=  90°-ri-Af-f^.  (g) 

Adding  (/")  and  (g)  and  dividing  by  2, 

P,P^L2=bjzIl^  -  {h) 2 

In  the  triangle  P1P2P2 

P1P2L2  =  180°  -[d  -\-  (180°  -  ri  -  Af)] 
=  -  ̂   +  ri  +  Af .  {{) 

*  The  following  formulae  are  those  adopted  by  the  Coast  and  Geodetic  Survey 
in  1915  (see  Special  Publications  Nos.  26  and  28). 
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Also,  PiP^Li  =  i8o°  -  f2  -  Af. 

Adding  ij)  and  (J)  and  dividing  by  2, 

\2  2        / 

Substituting  {h)  and  (^)  in  (e), 

Jh  —  hi  =  2  (i?„  +  ̂1)  sin  - 2 

sin 

cos e+^) 

0') 

(*) 

(0 

Expanding  the  denominator  and  dividing  the  numerator  and 

  —\  cos  - ,  we  obtain 

2(i?„  +  Ai)tan-tan(^^^^) 
hi-  hi 

I  —  tan  -  tan 
2 

(^") 
Expanding  tan  -  in  series  (see  p.  330),  retaining  but  two  terms  of 2 

the  series,  and  putting  6  =  -^  ■ 

5  tan 

1  + 

f^') 

2  P. 

=  5  tan 

in  which 

[128] 

[129] 

4  =  1  + 

R. 

the  correction  for  elevation  of  the  station  of  known  elevation, 

5  =  1  + 2i?„ tan 

e^')' 
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the  correction  for  the  difference  in  elevation, 

and  C  =  I  H   —: , 
12  RJ 

the  correction  for  distance. 

The  logarithms  of  ̂  ,  J5,  and  C  are  given  in  Tables  K,  L,  and  M,  for 

the  arguments  h,  log   5  tan  —   ^  ,  and  log  s,  respectively, 

174.  When  only  ojie  Zenith  Distance  is  Observed. 

From  (g)  and  (h)  we  have 

P2PiU  =  ̂^^=^  =  90°  -  ri  -  Ar  +  ̂. 2  2 

The  refraction  angle  is  Af  =  md,  where  m  is  the  coefficient,  to 
be  obtained  from  the  best  obtainable  values,  and  which  is  ap- 

proximately equal  to  0.071 ;  substituting  md  in  the  above  equation 
we  have 

^^^-^^^  =  9o°-ri  +  (o.5-m)0, 2 

and      tan  r^  ~  ̂'\  =  tan  (90°  +  (0.5  -  m)  B"  arc  \"  -  fi) 

=  tan[90»  +  (o.s-m);^-^-n] 

since  Q"  =  ~= — : — 77* 
Ra  sm  I 

Putting  this  s  term  =  ̂ ,  we  have 

tan  /^^^lii)  =  tan  [90°  +  ife  -  n].  (w) 

Substituting  in  [129]  from  (w), 

h  —  h  =  s  tan  [90°  +  ̂  —  fi]  ̂   .  5  .  C,  [130] 
in  which  A,  B,  and  C  have  the  same  meaning  as  before,  except 

that  B  is  given  for  the  argument  log  [s  tan  (90°  -\-  k  —  fi)]. 

Example.  Zenith  Distance  of  Mt.  Blue  from  Farmington,  87°  07'  i8".8;  dis- 
tance, 15,519  meters;  m  =  0.071;  instrument  2.20  meters  above  station  mark;  point 

sighted  4.40  meters  above  station  mark;  elevation  of  Farmington,  181.20  meters. 
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tn  0.071 

(0.5-OT)  0.429                    log  =  9.6325 
logs  =  4- 1909 

colog  Ra  sin  i"  =  8. 5092 

2.3326               90°  00' 00" log  Ra         =6.8052                 K  =  2i5".i    =        o3'35".i 
"  sini"       =4- 6856                                     f  =  87°  07' 18  .8 

1.4908                                        +     2°56'i6".3 

tan  =  8.71029 

log  5  =  4.19086 2. 901 15 

A                    I 
B                   3 
C                   0 

796.51  meters 

2.20      " 

Red.  to  Sta. 

Diff.  Eleva.  794-31 
Elev.  Farmington  181 .  20 
Elev.  Mt.  Blue      975.51 

TABLE  K* 

2. 901 19 

Log  A, Log  A, Log  A, Log^. 

units  of units  of units  of units  of 
hi. fifth 

hi. 
fifth hi. fifth 

hi- 
fifth 

place  of place  of place  of place  of decimals. decimals. decimals. decimals. 

Meters. Meters. Meters. Meters. 

0 1541 

3156 

4770 

0 II 22 33 
73 1688 

3303 4917 
I 12 

23 

34 
220 

183s 

3449 
5064 2 

13 

24 

35 

367 1982 

3596 

5211 

3 

14 

25 

36 

su 
2128 

3743 5357 
4 

15 

26 37 
661 

2275 

3890 5504 

5 16 

27 

38 

807 

2422 

4036 

5651 

6 

17 

28 

39 

954 

2569 
4183 

5798 

■ 

7 18 

29 

40 

IIOI 

271S 

4330 

5945 8 

19 

30 

41 

1248 
9 

2862 
20 

4477 

31 

6091 

1394 
10 3009 

21 
4624 

32 

1541 

3156 

4770 
•  In  these  tables  log  Ra  is  taken  as  6.80444,  the  mean  radius  in  latitude  40°  on  the  Clarice 

Spheroid  of  1866. 
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Table  K  gives  the  values  of  log  A ,  the  correction  factor  for  the 

elevation  of  the  known  station,  by  showing  the  limiting  values 

of  the  elevation  hi,  between  which  log  A  may  be  taken  as  o,  i, 

2,  3,  etc.,  units  of  the  fifth  place  of  decimals.  Log  A  is  positive, 

except  in  the  very  rare  case  where  hi  corresponds  to  a  point 

below  mean  sea-level. 

TABLE  L 

Log  i  tan  1 Log  s  tan  i Log  5  tan  i 

(f2  -  f i)  or  log Log  B,  units (fj  -  f  1)  or  log Log  B  units (fi  -  f  1)  or  log Log  B  units 

s  tan  (90°  +  * of  fifth  place 
5  tan  (90°  +  k 

of  fifth  place 
i  tan  (90°  +  k 

of  fifth  place 

-f  1)  •  (s  in of  decimals. -  ti)  •  (s  in of  decimals. -  f  i)  •  is  in of  decimals. 
meters.) meters.) 

meters. ) 

2.167 
0 

3-397 3-685 
I 9 

17 

2.644 

2 
3 445 

10 
3 

711 

18 

2.866 

3 
3 489 

II 
3 

735 

19 

3. Oil 4 
3 

528 

12 
3 

758 

10 

3. 121 5 
3 56s 

13 

3 
779 

21 

3.208 6 
3 

598 

14 

3 800 

22 3.281 7 
3 

629 

IS 

3 
820 

23 

3-343 
8 

3 658 
16 

3 

839 

24 

3-397 3 

685 

3 

857 

Table  L  gives  the  values  of  log  B,  the  correction  factor  for 

approximate  difference  of  elevation  by  showing  the  limiting 

values  of  log  [s  tan  |  (^2  —  fi)]  or  log  's  tan  (90°  +  ̂   —  fi)]  be- 
tween which  log  B  may  be  taken  as  o,  i,  2,  3,  etc.,  units  of  the 

fifth  place  of  dec'mals.  Log  B  has  the  same  sign  as  the  angle 
h  (r2  -  fi)  or  90°  +  ̂  -  fi;  for  example,  if  log  [s  tan  ̂   (fa  -fi)] 
lies  between  3.565  and  3.598  and  f  (^2  —  fi)  is  positive,  logjB  = 

-I-0.00013,  but  if  I  (^2  —  Ti)  is  negative  then  log  B  =  —0.00013, 

i.e.,  9.99987  —  10,  the  former  way  of  writing  being  usually  more 
convenient  in  practice. 
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TABLE  M 

Logi  (sin  meters). 
Log  C,  units  of  fifth 
place  of  decimals. 

Log  s  (j  in  meters). Log  C,  units  of  fifth 
place  of  decimals. 

0.000 
S-297 

4.875 
0 

5-352 

4  . 
I S 

S-II3 
2 

5-395 

6 

5.224 

5-432 S-297 
3 

5  463 

7 

Table  M  gives  the  value  of  log  C,  the  correction  factor  for  dis- 
tance between  stations,  by  showing  the  limiting  values  of  log  5 

between  which  log  C  may  be  taken  as  c,  i,  2,  3,  etc.,  units  of  the 
fifth  place  of  decimals.     Log  C  is  always  positive. 

PROBLEMS 

Problem  i.  Calculate  the  orthometric  correction  for  a  line  extending  2°  north- 

ward from  a  point  in  latitude  45°  N  at  an  elevation  of  1000  meters. 
Problem  2.  Compute  the  correction  for  reducing  to  sea-level  a  latitude  observed 

at  an  elevation  of  one  mile  in  latitude  45°  N. 

Problem  3.  Vertical  angle  from  5  to  B,  +2°  24'  58".94.  Vertical  angle  from 
B  to  S,  —2°  35' 34". 20.  Elevation  of  5  =  108.87  meters;  distance,  23,931.6 
meters;  log  Ro,  6.8052.     Compute  the  elevation  of  B. 



CHAPTER  XI 

MAP  PROJECTIONS 

175.  Map  Projections. 
Whenever  we  attempt  to  represent  a  spherical  or  a  spheroidal 

surface  on  a  plane  some  distortion  necessarily  results,  no  matter 
how  small  may  be  the  area  in  question.  The  problem  to  be 
solved  in  constructing  topographic  or  hydrographic  maps  is  to 
find  a  method  which  will  minimize  this  distortion  under  the 

existing  conditions.  The  number  of  projections  which  have 

been  devised  is  very  great;  for  the  description  and  the  mathe- 
matical discussion  of  the  properties  of  these  projections  the 

reader  is  referred  to  such  works  as  Thomas  Craig's  Treatise  on 
Projections,  United  States  Coast  and  Geodetic  Survey,  1882;  The 
Coast  and  Geodetic  Survey  Report,  1880;  C.  L.  H.  Max  Jurisch, 
Map  Projections,  Cape  Town,  1890;  G.  James  Morrison,  Maps, 
Their  Uses  and  Construction,  London,  1902;  and  A.  R.  Hinks, 

Map  Projections,  Cambridge,  191 2. 
In  this  chapter  we  shall  consider  only  those  projections  which 

are  used  for  such  maps  and  charts  as  are  of  importance  in  geo- 
detic surveys  and  in  navigation. 

176.  Simple  Conic  Projection. 
In  this  projection  the  map  is  conceived  to  be  drawn  on  the 

surface  of  a  right  circular  cone  which  is  tangent  to  the  sphere 
or  the  spheroid  along  the  middle  parallel  of  latitude.  The  apex 
of  the  cone  lies  in  the  prolongation  of  the  axis  of  the  spheroid. 
From  Fig.  98  it  is  evident  that  the  distance  TA  from  the  apex 
to  the  parallel  through  A  is  equal  to  N  cot  <^.  If  the  cone  is 
developed  on  a  plane  surface  we  shall  have  a  sector  whose 
center  is  T  and  whose  radius  is  i^  cot  <>.  (Fig.  99.)  All  other 
parallels  of  latitude  on  the  map  will  be  circles  drawn  about 

265 
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the  same  center  T,  and  all  meridians  will  be  represented  by 
straight  lines  passing  through  T.  The  spacing  between  the 
parallels  of  latitude  is  obtained  by  laying  off  distances  along 
the  central  meridian  which  are  proportional  to  the  distances 
between  the  same  parallels  on  the  spheroid.  The  position  of 
the  meridians  is  found  by  subdividing  the  middle  parallel  into 
spaces  which  are  proportional  to  the  lengths  of  the  arcs  of  the 

Fig.  98. 

same  parallel  on  the  spheroid.  Straight  lines  are  then  drawn 

from  the  center  T  through  these  points  of  sub-division.  Any 
meridian  or  any  parallel  may  be  assumed  for  the  central  meridian 
and  middle  parallel  of  the  map.  It  is  evident  from  the  above 
that  this  is  not  a  true  projection,  that  is,  the  points  are  not  those 
that  would  be  obtained  by  projecting  from  the  center  of  the 
sphere  onto  the  cone.  If  the  scale  of  the  map  is  such  that  the 
position  of  the  center  T  cannot  be  represented  on  the  paper, 
the  curves  may  be  laid  off  by  plotting  certain  points  by  means 
of  their  rectangular  coordinates  as  described  later  under  the 
poly  conic  projection. 

It  is  evident  that  the  meridians  and  parallels  of  a  conic 
projection  intersect  at  right  angles  in  all  parts  of  the  map,  as 
they  do  on  the  sphere.     The  scale  of  the  map  is  not  correct, 
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however,  except  along  the  middle  parallel.  For  a  map  having 
a  great  extension  in  the  longitude  and  but  Uttle  in  the  latitude, 

the  conic  projection  is  fairly  accurate.  Fig.  100  shows  a  com- 
pleted conic  projection  covering  the  area  of  the  United  States. 

105°  100°  95"  90°  85° 

Fig.  100.     Simple  Conic  Projection. 

177.  Bonne's  Projection. 
This  projection  is  a  modification  of  the  simple  conic  and  meets 

the  objection  that  the  scale  of  the  latter  becomes  inaccurate  as 

the  distance  from  the  middle  parallel  increases.  The  parallels 
of  latitude  are  concentric  circles  as  before,  but  each  parallel  is 

sub-divided  into  spaces  which  are  proportional  to  the  corre- 
sponding spaces  on  that  parallel  on  the  spheroid.  The  central 

meridian  and  all  parallels  are  therefore  correctly  sub-divided. 

The  meridians  are  obtained  by  joining  the  points  of  sub-division 
on  the  parallels.  The  meridians  in  this  projection  are  all 

curved,  except  the  central  one,  and  they  intersect  the  parallels 
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nearly,  but  not  quite,  at  right  angles  (Fig.  loi).  The  distortion 

in  this  projection  is  very  small,  and  for  small  areas  it  is  practi- 
cally a  perfect  projection.     It  has  been  much  used  in  Europe. 

130°        125°      120°        116°       110°     106° 100°      96°        90° 86°         80°        75°        70°         85°         60° 
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Fig.  ioi.    Bonne's  Projection. 

178.  The  Polyconic  Projection. 
The  idea  of  using  several  cones,  or  the  polyconic  projection, 

is  due  to  Mr.  F.  R.  Hassler,  the  first  superintendent  of  the  Coast 

Survey.  Each  parallel  of  latitude  shown  on  the  map  is  de- 
veloped on  a  cone  tangent  along  that  parallel.  The  radius 

(r^)  for  any  parallel  (latitude  <^)  is  iVcot<^;  and  the  angle 
between  two  elements  of  the  cone  when  developed  is  approxi- 

mately Q  =  (d\)  sin  <t),  as  will  be  evident  from  Fig.  102. 
In  constructing  the  map  the  degrees  of  latitude  are  laid  off 

along  the  central  meridian,  the  spacing  corresponding  to  the 
distances  on  the  spheroid.  The  points  where  the  meridians 

intersect  the  parallels  are  plotted  from  their  rectangular    co- 
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ordinates,  the  coordinate  axes  being  in  each  case  the  central 

meridian  and  a  line  at  right  angles  to  it  drawn  through  the 

latitude  in  question.  The  coordinates  themselves  are  found 

as  follows:  In  Fig.  103,  let  A  be  the  intersection  of  some  meridian 

and  parallel  which  are  to  be  drawn  on  the  map.     Then  the 

Fig.  I02. 
Fig.  103. 

radius  TA  =  N  cot  0  may  be  computed  from  the  known  lati- 
tude of  A,  and  the  angle  6  may  be  computed  from  the  known 

difference  in  longitude  between  0  and  A  by  the  equation  6  = 
(d\)  sin  (j>.     Then  for  x  and  y  we  havie 

and 

X  =  TA  sine  =  N cot 0 sin  {d\ sin <^) 

X 

y  =  TA  vers  d  =  -; — :  vers  6 sm0 

=  a;  tan e 

[131] 

=  X  tan  I  (d\  sin  <t>) [132] 

Values  of  these  numbers  will  be  found  in  Tables  XVI  and  XVII. 
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It  is  evident  that  the  parallels  and  meridians  do  not  intersect 

at  right  angles  except  at  the  central  meridian.  The  meridian 

and  parallels  are  both  curved,  as  in  Bonne's  projection,  but 
since  the  lower  parallels  are  flatter  there  is  a  separation  of  the 

parallels  which  becomes  more  .marked  toward  the  east  and 

west  margins  of  the  map.  For  this  reason  this  map  becomes 

less  and  less  accurate  as  the  longitude  is  extended.  In  mapping 

areas  which  extend  principally  north  and  south,  it  is  superior 

to  other  projections'.  It  is  in  general  use  in  the  United  States 
for  Government  maps.  Fig.  104  shows  a  polyconic  projection 
covering  the  area  of  the  United  States. 

There  is  one  disadvantage  in  the  Polyconic  and  the  Bonne's 
projections,  namely,  that  if  two  maps  of  adjoining  areas  are 

to  be  placed  side  by  side  they  cannot  be  placed  exactly  in  con- 
tact because  the  limiting  (common)  meridian  curves  in  opposite 

directions  on  the  two  maps.  In  the  simple  conic  and  in  the 

Lambert  projection,  to  be  described  in  the  next  article,  the 

meridians  are  straight  and  this  difficulty  does  not  exist. 

179.  Lambert's  Projection. 
The  Lambert  projection  having  two  standard  parallels  was 

invented  about  the  middle  of  the  eighteenth  century,  but  has 

recently  been  brought  into  prominence  through  its  use  in  the 

French  battle  maps.     The  fundamental  notion  is  that  of_a_cone^ 

tangent  along  the  middle_parallel  of  the  map^  the  radius  of  this 

parallel  (on  the  map)  being,  N  cot<l>,  and_the_angle  between 

^  the  central  meridian  and  any  other  meridJMi^J^^ 

This  would  give  a  map  in  which  one  parallel,  and  only  one,  is 

correctly  divided.  We  may,  however,  modify  the  projection 

so  as  to  have  two  standard  (correct)  parallels.  This  is  done  by 

reducing  the  scale(multiplying  by  a  constant)  and  is~practi-- 

cally  equivalent  to-emplQying_aj:one  which  cuts~the  spheroid  in 
the  two  standard  parallels   

The  other  parallels  are  so  spaced  that  the  scale  of  the  map  is 

the  same  for  all  azimuths  at  aiiyLjme-4]dace^±liat  is,  the  scale 

along  a  meridian  is  the  same  as  the  scale  in  an  east  and  west 
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plane.  A  projection  having  this^prpperty  is^  said jto  j)e  "con- 
formal."     It  may  be^proved.  that -this,  condition  is  true  if_the 

spacing  between  parallels  is  /3  +  - — -,  where  jS  is  the  arc  of  the 

meridian  between  parallels  on  the  original  tangent  cone  meas- 
ured from  the  parallel  of  contact,  and  po  is  the  mean  radius  of 

curvature  of  the  spheroid  at  a  point  on  this  tangent  parallel. 
Since  the  projection  is  conformal,  all  lines  on  the  map  cut  each 
other  at  the  same  angles  as  do  the  corresponding  Unes  on  the 
spheroid.  There  is  a  tendency,  therefore,  for  small  figures  to 

have  the  same  shape  on  the  map  that  they  have  on  the  earth's 
surface.  The  scale  of  this  map  is  correct  on  the  two  standard 
parallels.  Between  these  two  parallels  the  scale  is  a  little  too 
small  and  outside  these  parallels  the  scale  is  too  large.  The 

error  is  not  serious,  however,  if  the  standard  parallels^are  chosen, 
aslslisual,  one  sixth  and  five  sixths  the  length  of  the  meridian 
arc  to  be  shown.     Fig.  105  shows  a  Lambert  projection. 

50°  40°  30°  20°  10°  0° 

Fig.  105.     Lambert  Projection. 

This  projection  may  be  extended  indefinitely  in  an  east  and 
west  direction  without  error.  The  error  becomes  greater  and 

greater  as  the  map  is  extended  to  the  north  and  south.  In 
this  respect  it  is  just  the  contrary  of  the  Polyconic  Projection. 
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For  a  complete  description  of  this  projection,  together  with 
tables  for  projecting  maps,  see  United  States  Coast  Survey 

Special  Publications  47  and  52. 
180.   The  Gnomonic  Projection. 

In  the  gnomonic,  or  central,  projection  the  projecting  point 
is  at  the  center  of  the  sphere  and  the  plane  of  the  map  is  tangent 
to  the  sphere  at  some  selected  point.  Every  plane  through 
the  center  cuts  the  sphere  in  a  great  circle  and  cuts  the  map  in 
a  straight  Kne;  hence  every  great  circle  is  represented  by  a 
straight  Hne  and  every  straight  hne  on  the  map  must  represent 
a  great  circle. 

Fig.  106  shows  the  Atlantic  Ocean  projected  on  a  plane 

tangent  at  <^  =  30°  N  and  X  =  30*^  W. 

Fig.  106.     Gnomonic  Projection  or  Great-circle  Chart. 

The  meridians  and  the  equator^are_oLcourse_represented  by 

straight  lines.  The  parall6ls^of  latitude  are  conic  sections,  in 
tSs^cas^eZliyperbolas.  The  parallels  are  best  constructed  by 

employing  the  equations  of  the  curves  and  plotting  points  by 
means  of  coordinates. 
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The  gnomonic  projection  is  used  almost  exclusively  for  deter- 

mining  the  posiHohs  ot  great'dfcTesloflh  oFnaviga- 

tion.  By  joining  any^twoTpTacesT by  a  straight  line  the  great- circle  (or  shortest)  track  is  at  once  shown.  The  latitudes  and 
longitudes  of  any  number  of  points  on  this  track  may  be  read 
off  the  chart  and,  if  desired,  may  be  transferred  to  any  other 
chart  and  the  curve  sketched  in.  The  point  where  the  great 
circle  approaches  most  nearly  to  the  pole  is  found  at  once  by 
drawing  from  the  pole  a  line  perpendicular  to  the  track.  The 
foot  of  this  perpendicular  is  the  vertex,  or  point  of  highest  latitude. 

i8i.   Cylindrical  Projection. 

If  a  cyHnder  is  circumscribed  about  a  sphere  so  as  to  be  tan- 
gent along  the  equator,  and  if  points  be  projected  onto  the 

cylinder  by  straight  lines  from  the  center,  the  cylinder,  when 
developed  will  give  a  map  in  which  the  meridians  and  parallels 
are  all  straight  lines,  the  relative  distances  between  points  being 
approximately  correct  near  the  equator  but  distorted  in  high 
latitudes.  The  meridians  will  all  be  parallel  to  each  other.  The 
parallels  of  latitude  will  be  parallel  to  each  other  and  will  be 

spaced  wider  and  wider  apart  as  the  latitude  increases.  Evi- 
dently the  scale  of  the  map  is  different  for  different  latitudes. 

It  is  also  true  that  at  any  point  the  scale  along  a  meridian  is 
not  the  same  as  the  scale  along  a  parallel.  Such  a  projection 

is  of  no  practical  value,  but  it  aids  in  understanding  the  Mer- 
cator  chart  which  is  described  in  the  next  article. 

182.   Mercator's  Projection. 

A  modification  of  the  above  projection,  known  as  Mercator's, 
consists  in  so  spacing  the  parallels  of  latitude  that  the  relation 
between  increments  of  latitude  and  longitude  on  the  chart  is 

the  same  as  the  relation  between  increments  of  latitude  and  longi- 

tude at  the  corresponding  point  on  the  earth's  surface,  or  ap- 
proximately, i'  lat.  on  chart:  i'  long,  on  chart  =  i'  lat.  on 

spheroid:  i'  long,  on  spheroid.  If  this  relation  is  preserved,  it 
will  be  found  that  any  line  of  constant  bearing  {loxodrome  or 
rhumb  line)  will  be  represented  by  a  straight  line  on  the  chart. 
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In  Fig.  107  let  AB  on  the  earth's  surface  be  represented  by 
A'B'  on  the  chart  (actual  size).  In  order  that  the  two  lines 
may  have  the  same  bearing  it  is  necessary  that 

or 

d^  _  AC_  _  Rmd<i> 
dx~  CB~  Rpd\ 

dy  = 

dx 

Rpd\ 

Rmd(f). 
{a) 

Pcae 

£'
 

dx 

A' 

O'
 

CHART 

Fig.  107. 

In  other  words,  since  the  longitude  has  been  expanded  fin  the 

ratio  — )  by  the  method  of  constructing  the  chart,  it  is  neces- Rp/ 

sary  to  expand  the  latitudes  in  the  same  ratio  in  order  to  preserve 

the  scale  and  give  AB  the  same  bearing.  Now  since  dx  is  rep- 
resented as  large  as  the  corresponding  arc  on  the  equator,  we 

have 

dx   ad\  _  a 
Rp  d\     Rp  dx      Rp 

Substituting  in  (a),  we  obtain 

dy  =—  'Rmd<f> 

Kp 
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or,  since  Rp  =  N  cos  <]> 

dy  =  — — - — 'ads ^      Ncos<t> 

a{i-  e") 
cos  0(1  —  e^  sin^  <^) 

f  (i  -  e^) 

0   cos0(i  —  e^sin^i/)) 

d<t> 

.  d(t>. 

Multiplying  e^  by  sin^  (f>  +  cos^  0,  the  integral  may  be  sep- 
arated into  two,  giving,  after  multiplying  numerator  and  de- 

nominator by  cos  4>, 

cos  4)  d4> 

JC' cos  <l>  d(l)             C^   eci   ;   -ae  I      
0     cos'^^             Jo    I  — 

e'^  siir  4) 

a  Vi .     I  +  sin  6      i    ,      i  +  e  sin  <i' 
=  ■^7   "l^g   r— --elog   r— - M\_2       I  —  sm  0      2  I  —  c  sin  <^ 

where  M  =  0.4342945,  the  modulus  of  the  common  logarithms. 

Employing  the  formulae, 

log^   =  lix  -\   h  •  •  • ) 
T.  -  X        \        3  / 

J  .  I  +  sm  X      .      /    o   ,  ̂ \ 
and    -. —  =  tan  45    +  -) I  —  sm  aj  \  2/ 

the  equation  may  be  expressed 

y=  ̂[logta„(45°  +  f)];-a.[.sin«+(^+  •  •  ■  |  [,33] 

in  which  y  is  in  the  same  linear  units  as  a. 

In  order  to  express  y  in  nautical  miles  or  minutes  of  arc  on  the 

,     *  ..  .  .  ,         ,, .  ,    ,     60  X  180     .  . 
equator  *  it  is  necessary  to  multiply  by   ,  giving, 

air 

*  The  Nautical  Mile  contains  6080.20  ft.;  this  is  not  identical  with  the  number 
of  feet  in  one  minute  of  arc  on  the  earth's  equator.  For  a  discussion  of  this  matter, 
see  Appendix  12,  Coast  Survey  Report  for  1881. 
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>;  =  791 5. 705  log  tan^45°  +  ̂]- 3437-7  (^^sin2  0  +  ̂-^^5_^y      [134] or 

>'  =  7915-705  log  tan  (45°  +  -)  -  22'.945  sin  </>-o.o5i  sin3<^.      [135] 

110 
120°  100-  80" 

Fig.  108.    Mercator  Chart. 

40^ 

Also  :k  =  60  X  X°,  .       [136] 
the  unit  being  the  nautical  mile.    Values  of  y,  called  meridional 
parts,  will  be  found  in  works  on  navigation. 

This  chart  is  much  used  by  navigators  because  it  possesses 

the  property  that  the  bearing  of  any  point  B  from  a  point  A  as 
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measured  on  the  chart  is  the  same  as  that  bearing  on  which  a 
vessel  must  sail  continuously  to  go  from  A  to  B.  The  track 
cuts  all  meridians  on  the  globe  at  the  same  angle,  just  as  a 
straight  line  on  the  chart  cuts  all  meridians  at  the  same  angle. 
This  track  is  not  the  shortest  one  between  A  and  B,  but  for 
ordinary  distances  the  length  differs  but  little  from  that  of  the 

great-circle  track.  In  following  a  great-circle  track  the  navi- 
gator transfers  to  the  Mercator  chart  a  few  points  on  the  great-- 

circle  obtained  from  his  great-circle  chart,  by  means  of  their 
latitudes  and  longitudes  and  then  sails  on  the  rhumb  lines 
between  consecutive  plotted  points.  Fig.  108  shows  a  Mercator 
chart. 

183.  Rectangular  Spherical  Coordinates. 

A  system  of  rectangular  spherical  coordinates,  used  in  Europe, 
consists  in  referring  all  points  to  two  great  circles  through  some 
selected  origin,  one  of  them  being  the  meridian,  the  other  the 

prime  vertical.  Within  small  areas  these  coordinates  are  prac- 
tically the  same  as  rectangular  plane  coordinates.  When  the 

area  is  so  great  that  the  effect  of  curvature  becomes  appre- 
ciable, small  corrections  are  introduced,  so  that  the  form  of  the 

plane  coordinates  is  retained  without  loss  of  accuracy.  Such  a 
system  is  very  convenient  when  connecting  detail  surveys  with 
the  triangulation,  particularly  for  local  surveyors  who  may 
not  be  familiar  with  geodetic  methods  of  calculating  latitudes 
and  longitudes.  The  method  is  not  well  adapted  to  mapping 

very  large  areas.    (See  Crandall's  Geodesy,  p.  187.) 



CHAPTER  XII  r 

APPLICATION  OF  METHOD  OF  LEAST  SQUARES  TO 
THE  ADJUSTMENT  OF  TRIANGULATION 

184.  Errors  of  Observation. 

Whenever  an  observer  attempts  to  determine  the  values  of 

any  unknown  quantities,  he  at  once  discovers  a  limit  to  the 

precision  with  which  he  can  make  a  single  measurement.  In 

order  to  secure  greater  precision  in  his  final  result  than  can  be 

obtained  by  a  single  measurement,  he  resorts  to  the  expedient 

of  making  additional  measurements,  either  under  the  same  con- 
ditions or  under  different  conditions.  Under  these  circumstances 

it  will  be  observed  that  the  results  are  discordant  and  that  the 

same  numerical  result  almost  never  occurs  twice.*  The  ques- 
tion at  once  arises,  then,  What  are  the  best  values  of  the  un- 

known quantities  which  it  is  possible  to  obtain  from  these 
measurements  ? 

The  method  of  least  squares  has  for  its  main  objects  (i)  the 

determination  of  the  best  values  which  it  is  possible  to  obtain 

from  a  given  set  of  measurements,  and  (2)  the  determination 

of  the  degree  of  dependence  which  can  be  placed  upon  these 

values,  or,  in  other  words,  the  relative  worth  of  different  deter- 
minations; (3)  it  also  enables  us  to  trace  to  their  sources  the 

various  errors  affecting  the  measurements  and  consequently  to 

increase  the  accuracy  of  the  result  by  a  proper  modification  of 
the  methods  and  instruments  used.     The  method  is  founded 

*  This  is  only  true,  however,  when  the  observer  is  taking  each  reading  with  the 
utmost  possible  refinement.  If,  for  example,  angles  are  read  only  to  the  nearest 

degree,  the  result  will  always  be  the  same  no  matter  how  many  times  the  measure- 
ment may  be  repeated;  but  if  read  to  seconds  and  fractions,  they  will  in  general  all 

be  different. 

279 
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upon  the  mathematical  theory  of  probability,  and  upon  the 

assumption  that  those  values  of  the  unknowns  which  are  ren- 
dered most  probable  are  the  best  that  can  be  obtained  from  the 

measurements. 

185.  Probability. 

If  an  event  can  happen  in  a  ways  and  fail  in  h  ways,  and  all 

of  these  ways  are  equally  likely  to  occur,  the  probability  that 

the  event  will  happen  in  any  one  trial  is  expressed  by  the  fraction 

  r ,  and  the  probability  that  it  will  fail  is  expressed  by   7  • 
a  +  0  a  -\-b 

Since  it  must  either  happen  or  fail,  the  sum  of  the  two  prob- 

abilities represents  a  certainty.     This  sum  is   r  -f- a  -\-b      a  -\-h 

Therefore  the  probability  of  the  happening  of  an  event  is  repre- 
sented by  some  number  lying  between  o  and  i,  the  larger  the 

fraction  the  greater  the  probability  of  its  happening.  For  ex- 
ample, a  die  may  fall  so  that  any  one  of  its  six  faces  is  uppermost, 

and  all  of  these  six  possibilities  are  equally  likely  to  occur;  the 

probability  of  any  one  of  its  faces  being  up  is  |. 

186.   Compound  Events. 

If  a  certain  event  can  happen  in  a  ways  and  fail  in  h  ways, 

and  if  a  second,  independent,  event  can  happen  in  a'  ways  and 
fail  in  h'  ways,  and  all  are  equally  likely  to  occur,  then  the  total 
number  of  ways  in  which  the  events  can  take  place  together  is 

{a  +  h)  {a'  -\-  h') .     The  number  of  ways  in  which  both  can  hap- 

pen  is  aa'  and  the  probability  of  its  happening  is  ; — ,  ,,  ,  .  ,  ,..  • 
{a-\-o){a-\-h) 

For  example,  the  probability  of  double  six  being  thrown  with  a 

pair  of  dice  is  ̂   X  |  =  ̂ V-     ̂ ^  i^  evident  that  the  probability 
of  the  simultaneous  occurrence  of  two  events  is  the  product  of 

the  probabilities  of  the  occurrence  of  the  component  events. 

In  a  similar  way  it  may  be  shown  that  the  probability  of  the 

simultaneous  occurrence  of  any  number  of  independent  events 

is  the  product  of  their  separate  probabiUties;   that  is,  if  Pi,  Pi, 

Pz  .  .  .  are  the  probabilities  of  the  occurrence  of  any  number 
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of  independent  events,  the  probability  of  their  simultaneous 
occurrence  is 

P  =  P,xP2XPz  .  .  .  ,  [137] 

187.  Errors  of  Measurement  —  Classes  of  Errors. 
Every  measurement  of  a  quantity  is  subject  to  error,  of  which 

the  following  kinds  may  be  distinguished.  ^ 
1.  Constant  Errors. 

2.  Systematic  Errors. 
3.  Accidental  Errors. 

188.  Constant  Errors. 

A  constant  error  has  the  same  effect  upon  all  observations  in 
the  same  series  of  measurements.  For  instance,  if  a  steel  tape 
is  o.oi  ft.  too  long,  this  error  affects  every  100  ft.  measurement 
in  just  the  same  way. 

189.  Systematic  Errors. 
A  systematic  error  is  one  of  which  the  algebraic  sign  and  the 

magnitude  bear  a  fixed  relation  to  some  condition.  For  ex- 
ample, if  the  measurements  with  the  tape  are  made  at  different 

temperatures,  the  error  resulting  from  this  variation  of  tem- 
perature is  systematic  and  may  be  computed  if  the  tempera- 

tures and  the  coefficient  of  expansion  are  known. 
190.  Accidental  Errors. 
Accidental  errors  are  not  constant  from  observation  to  ob- 

servation; they  are  just  as  likely  to  be  positive  as  negative;  in 
general  they  follow  the  exponential  law  of  error,  as  will  be 
explained  later  (Art.  197).  The  error  of  placing  a  mark  opposite 
to  the  end  graduation  of  the  tape  is  of  this  class. 

191.  Comparison  of  Errors. 
There  is  in  reality  no  fixed  boundary  between  the  accidental 

and  the  systematic  errors.  Every  accidental  error  has  some 
cause,  and  if  the  cause  were  perfectly  understood  and  the  amount 
and  sign  could  be  determined,  it  would  cease  to  be  an  accidental 
error,  but  would  be  classed  as  systematic.  On  the  other  hand, 
errors  which  are  either  constant  or  systematic  may  be  brought 
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into  the  accidental  class,  or  at  least  made  to  partially  obey  the 
law  of  accidental  error,  by  so  varying  the  conditions,  instru- 

ments, etc.,  that  the  sign  of  the  error  is  frequently  reversed. 
If  a  tapfe  has  o.oi  ft.  uncertainty  in  length,  this  produces  a 
constant  error,  in  the  result  of  a  measurement.  If,  however,  we 
use  several  different  tapes,  each  with  an  uncertainty  of  o.oi  ft., 
this  error  may  be  positive  or  negative  in  any  one  case.  In  the 
long  run  these  different  errors  tend  to  compensate  each  other 
like  accidental  errors. 

In  the  class  of  systematic  errors  would  be  placed  such  errors 
as  those  due  to  changes  in  temperature,  light,  and  moisture, 
or  change  in  the  adjustments  of  instruments.  These  errors 
may  be  computed  and  allowed  for  as  soon  as  we  know  the  law 

governing  their  action,  or  they  may  be  partially  eliminated  by 
varying  conditions  under  which  the  measurements  are  made. 

Under  the  constant  class  comes  the  observer's  error,  which 
tends  to  become  constant  with  increased  experience  in  observing. 
This  error  may  be  allowed  for  as  soon  as  its  magnitude  and  sign 
have  been  determined,  or  it  may  be  eliminated  by  the  method 
of  observation.  Certain  errors  in  the  instrument  may  have  a 
constant  effect  on  the  result;  these  may  be  dealt  with  in  the 
same  manner  as  the  personal  error.  It  should  be  noticed  that 

after  the  constant  error  or  the  systematic  error  has  been  elimi- 
nated, there  still  remains  a  small  error  due  to  the  fact  that  the 

magnitude  of  the  constant  error  itself  was  not  perfectly  deter- 
mined or  that  its  elimination  was  imperfect.  This  remaining 

error  must  be  regarded  as  an  error  of  the  accidental  class,  since 
its  magnitude  is  unknown  and  it  is  just  as  likely  to  be  positive 
as  negative. 

Under  accidental  errors  are  included  all  those  which  are  sup- 
posed to  be  small  and  just  as  likely  to  be  positive  as  negative. 

They  are  due  to  numerous  unknown  causes,  each  error  being  in 
reaUty  the  algebraic  sum  of  many  smaller  errors.  Under  this 
class  may  be  noted  errors  in  pointing  with  a  telescope,  errors  in 
reading  scales  and  estimating  fractions  of  scale  divisions,  and 



ADJUSTMENTS  OF  OBSERVATIONS  283 

undetected  variations  in  all  of  the  conditions  governing  syste- 
matic errors. 

192.  Mistakes. 

These  are  not  errors,  but  they  must  be  considered  in  connec- 

tion with  the  discussion  of  accuracy  of  observations.  They  in- 
clude such  cases  as  reading  one  figure  for  another,  as  a  6  for  a  o, 

or  reading  a  scale  in  the  wrong  direction,  as  reading  46°  for  34°. 
193.  Adjustment  of  Observations. 

When  the  number  of  measurements  is  just  sufficient  to  de- 
termine the  quantities  desired,  then  there  is  but  one  possible 

solution,  and  the  results  must  be  accepted  as  the  true  values. 

When  additional  measurements  are  made  for  the  purpose  of 

increasing  the  accuracy  of  the  results,  this  gives  rise  to  discrep- 
ancies among  the  different  measurements  of  the  same  quantities, 

since  each  is  subject  to  errors.  The  method  of  least  squares 

enables  us  to  compute  those  values  which  are  rendered  most 

probable  by  the  existence  of  the  observations  and  in  view  of 

the  discrepancies  noted;  it  cannot,  however,  tell  us  anything 
about  the  existence  of  constant  errors,  unless  new  observations 

made  under  different  conditions  reveal  new  discrepancies.  For 

example,  if  a  pendulum  is  swung  and  certain  small  variations 

in  the  last  decimal  place  of  the  period  are  noticed,  these  may  be 

regarded  as  due  to  small  errors  in  the  running  of  the  chronom- 
eter and  to  accidental  errors  of  observing;  but  if  the  pendulum 

case  be  mounted  on  a  support  whose  flexibility  is  very  much 

greater  than  that  of  the  first,  and  larger  variations  are  now 

observed,  it  becomes  apparent  that  an  error  of  the  systematic 

class  is  affecting  all  our  observations,  though  it  does  not  appear 
at  all  in  the  first  observations,  because  all  the  measurements 

were  affected  alike.  An  investigation  of  the  law  governing 

this  error,  and  the  determination  of  its  magnitude  and  sign, 

enable  us  to  correct  the  result  for  such  part  of  the  error  as  we 

are  able  to  determine.  There  remains  in  the  result,  however, 

an  accidental  error,  namely,  the  error  in  the  measurement  of 
the  flexure  correction. 



284  ADJUSTMENT  OF  TRIANGULATION 

194.  Arithmetical  Mean. 

The  formulae  employed  in  adjusting  observations  are  usually 
made  to  depend  upon  the  axiom  that  if  a  number  of  observations 

be  made  directly  upon  the  same  quantity,  all  made  under  the 

same  conditions  and  with  the  same  care,  the  most  probable 

value  of  the  quantity  sought  is  the  arithmetical  mean  of  all 

the  separate  results;  that  is,  if  the  results  of  the  observations 

are  Mi,  M2,  Mz,  .  .  .  Mn,  the  most  probable  value  of  the  quan- 
tity, Mo,  is  given  by 

^o  =  ̂-  +  ̂ '+--^-  =  Sj£.         [,38] n  n 

It  is  to  be  carefully  noted  that  this  is  not  the  true  value,  M, 

but  simply  the  most  probable  value  under  the  circumstances; 

if  additional  measurements  be  made,  Mq  changes  correspond- 
ingly in  value,  because  we  know  more  about  its  real  value  than 

we  did  at  first. 

195.  Errors  and  Residuals. 

It  now  becomes  necessary  to  distinguish  between  errors  and 

residuals.  The  error  is  the  difference  between  any  measured 

value  and  the  true  value.  Its  magnitude  can  never  be  known, 
because  the  true  value  can  never  be  known.  The  residual  is 

the  difference  between  a  measured  value  and  the  most  probable 

value.  This  is  a  quantity  which  may  be  computed  for  any  set 

of  observations.  In  a  set  of  very  accurate  observations  which 

are  free  from  constant  and  systematic  errors  the  residual  is  a 

close  approximation  to  the  true  error.  It  may  be  shown  that 

for  the  case  of  direct  observations  the  algebraic  sum  of  the 

residuals  is  zero;  that  is,  if  we  compute  ̂ i  =  Mx  —  Mq,  ih  = 

M'i  —  Mo,  etc.,  then  ̂ v  =  o,  where  2;i,  z^  .  .  .  are  the  residuals. 
196.  Weights. 

In  case  the  measurements  are  of  different  degrees  of  relia- 
bility, they  are  given  different  weights.  The  weight  of  an 

observation  may  be  regarded  as  the  number  of  times  the  ob- 
servation is  repeated  and  the  same  numerical  result  obtained. 
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It  expresses  the  relative  worth  of  different  measured  values. 
Weights  are  purely  relative  and  may  be  computed  on  any  base 
desired.  To  say  that  two  measurements  have  weights  2  and  i 

respectively,  is  the  same  as  saying  that  they  have  weights  ̂  
and  |.  From  the  above  definition  it  is  apparent  that  the  weighted 
mean  is  expressed  by 

piMi  +  P2M2  +  •  •  •  _  XP^ 

Xp  Xp  ' that  is,  the  weighted  mean  is  found  by  multiplying  each  ob- 
servation by  its  weight,  adding  the  results,  and  dividing  by  the 

sum  of  the  weights. 
Multiplying  an  observation  (Mi)  by  its  weight  (^1)  is  the 

same  as  taking  pi  observations  each  equal  in  value  to  Mi. 

M. 
[139] 

197.  Distribution  of  Accidental  Errors. 

An  inspection  of  the  results  of  a  large  number  of  measure- 
ments will  show  that 

(i)   -\-  and  —  errors  are  equally  numerous. 
(2)  Small  errors  are  much  more  numerous  than  large  ones. 
(3)  Very  large  errors  seldom  occur. 

The  curve  which  expresses  the  law  of  variation  of  such  errors 
will  be  of  the  form  shown  in  Fig.  109.     In  accordance  with  (i) 
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the  curve  is  symmetrical;  in  accordance  with  (2)  its  maximum 
is  at  the  axis  of  F;  from  (3)  it  is  evident  that  the  curve  cuts 
the  axis  of  X  at  some  distance  from  0. 

The  manner  in  which  observations  are  affected  by  accidental 

errors  is  shown  by  the  "shot  apparatus  "  shown  in  Fig.  no.    A 

Fig.  iio.     "Shot  Apparatus." 

large  number  of  small  shot,  representing  observations,  are 
allowed  to  drop  through  an  opening  in  the  middle  of  the  case. 
If  there  were  no  obstructions  the  shot  would  fall  directly  into 
the  central  (vertical)  compartment.  Between  the  opening  and 
the  vertical  compartments  a  number  of  pegs  are  interposed, 
each  representing  a  source  of  error  or  deflection  of  the  shot 
from  its  natural  course.     The  shot  are  therefore  diverted  some- 
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what  from  a  straight  course  and  arrange  themselves  in  the 
different  columns  in  the  manner  shown.  The  curve  joining  the 

tops  of  the  columns  is  seen  to  resemble  closely  the  ''curve  of 

error." 
In  order  to  obtain  a  formula  expressing  the  law  of  error  we 

suppose  the  curve  asymptotic  to  the  axis  of  X,  and  write  the 
equation  of  the  curve  in  the  general  form 

y=f{x),  [140] 

where  x  represents  the  magnitude  of  an  error  and  y  the  fre- 

quency with  which  this  error  occurs  on  a  large  number  of  measure- 

ments; /  represents  some  unknown  function  of  x.  It  is  neces- 
sary to  assume  that  the  number  of  observations  is  very  large; 

otherwise  the  supposed  balancing  of  +  and  —  errors  will  be 
imperfect.  The  true  error  x  can  never  be  known,  but  the 

distribution  of  the  residuals  about  the  most  probable  value 

will  evidently  follow  the  same  general  law,  so  we  may  write 
also 

y=f{v)  [141] 

as  the  law  to  which  the  residuals  must  conform.  This  equation 

also  expresses  the  probability  of  the  occurrence  of  a  residual  v. 
If  we  let  the  total  area  between  the  curve  and  the  axis  of  X  be 

represented  by  unity,  then  the  probability  that  a  certain  residual 

will  fall  between  the  Hmits  v  and  v  -{-  dv  will  be  represented  by 
the  area  included  between  the  curve,  the  X  axis,  and  the  two 

ordinates  at  v  and  v  +  dv,  since  in  the  long  run  the  number  in  a 

given  column  will  be  proportional  to  the  probability  expressed 

by  the  ordinate  at  that  point,  that  is, 

y  dv  =  f  {v)  dv.  [142] 

If  we  suppose  n  observations  of  equal  weight,  giving  the  results 

Ml,  Ml,  .  .  .  M„,  to  be  made  on  any  functions  of  the  unknowns 

Zi,  Z2,  .  .  .  ,  2n,  giving  the  residuals  Vi,  v^,  .  .  .  ,  v„,  then  the 

probability  of  the  occurrence  of  these  residuals  is  /  (vi)  dv, 

f  {V2)  dv  .  .  .  f  {vn)  dv.    The   probability    of    the    simultaneous 
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occurrence  of  these  residuals  is  the  product  of  the  separate 
probabiUties,  that  is, 

P  =J  (vi)  dv  Xf(v2)dv  X   .  .  .  f  (z>„)  dv.  [143] 

or,  taking  logs  of  both  members  of  the  equation, 

logP  =  logfiVi)  +  log/ (1)2)  +    ■    •    •    log  f{Vn)  +W  X  \0gdv. 

The  results  desired  for  Zi,  Z2,  etc.,  are  those  for  which  the  prob- 
ability of  the  occurrence  of  ̂^i,  1)2,  ...  is  a  maximum.  Therefore 

P  must  be  a  maximum.  To  find  the  conditions  for  this  maxi- 

mum, differentiate  log  P  with  respect  to  each  variable,  Zi,  Z2,  .  •  , 
and  place  the  results  equal  to  zero.     This  gives 

dlogP  _     I       df  (vi) 

dzi     ~  /  (vi)  '   dzi 
dXogP  _     I      df{v,) 
dZ2  f  (V2)       dZi 

+ 

+ 

dZi 

dZ2 

fM 

[144] 

But  we  observe  that 

dz        •'  ̂  ̂  dz 

in  which  /'  represents  some  new  function  of  v. 

For  brevity  place 

51 =^^"^' 

[145] 

[146] 

Then  Equa.  [144]  become 
dzi dzi 

OZi 

dV2 

•z. 

■^ 

('? 
[147] 

These  equations  contain  all  the  unknown  quantities  (z)  and 

are  equal  in  number  to  the  number  of  unknown  quantities. 
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Hence,  if  the  form  of  the  function  F  were  known,  the  solution  of 

these  equations  would  give  the  most  probable  values  of  Zi,  22,  etc. 

The  above  equations,  being  perfectly  general,  hold  true  for  all 

cases,  so  they  must  hold  true  for  any  special  case.  The  form  of 

F  determined  for  the  special  case  must  therefore  be  the  form  of 
this  function  for  all  cases.  t 

Consider  n  direct  observations  of  equal  weight  on  one  unknown 

quantity  Zi,  the  results  of  the  measurements  being  Mi,  M2, 

.  .  .  Mn,  and  the  residuals  being  denoted  by  Vi,  v^,  .  .  .  Vn. 

The  most  probable  value  of  Zi  is  given  by 

Zi    =   Ml   —  Vi    =   M2   —  V2   =     ...    Mn   —  Vn. 

Differentiating  with  respect  to  Zi, 

1=-^^=-^=  =-  ̂ .  (a) 
dZi  dZi  dZi 

Substituting  these  values  in  Equa.  [147],  we  obtain 

F  (vi)  +F{V2)  +  ■  '  -  +F  (vn)  =  o.  (&) 

But  in  this  special  case  (Art.  195), 

^'l   +  %   +     •     •     •     -\-Vn    =   O.  (C) 

Hence,  if  both  Equa.  (b)  and  (c)  are  true.  F  must  signify  mul- 
tiplication by  a  constant;  that  is, 

F  (v)  =  cv.  [148] 

Substituting  in  Equa.  [146]  and  [145], 

dz        ̂   ̂  ̂       dz 

,  I      dfiv)         dv  ' and  —r ^  .  -*^-^^  =  cv  — 
/  {v)      dz  dz 

Integrating  both  members, 

log/  {v)   =  I  CT^  +  c'. 

Therefore  f  (v)  =  g(i '=»'+''') 

Substituting  this  in  the  equation  of  the  curve  of  error  (y  =f  (v)) , 
we  have 

y  =  ke^'^. 
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In  reality  y  decreases  as  v  increases;  the  exponent  of  e  is  there- 
fore negative,  and,  since  the  constants  may  be  combined,  we  have 

y  =  ke-'^'^\  [149] 
in  which  W  and  Iz  are  constants  depending  upon  the  character  of 

the  observations.  This  equation  expresses  the  law  in  accordance 

with  which  the  residuals  must  be  distributed  in  order  to  give  a 

maximum  value  of  P.  If  we  replace  i>  by  x,  the  equation  also 

shows  the  law  governing  the  distribution  of  the  actual  errors. 

It  is  important  to  note  that  the  law  governing  the  distribution 

of  accidental  errors  holds  true  in  the  long  run;  in  order  to  have  a 

close  agreement  of  the  theory  with  the  results  actually  observed 

it  is  essential  that  the  number  of  observations  should  be  very 

large.  With  a  limited  number  of  observations  we  should  expect 

that  the  residuals  would  follow  the  law  only  approximately. 

198.   Computation  of  Most  Probable  Value. 

From  Equa.  [143]  we  have  seen  that 

P  =  I W  X  f  {V2)  .  .  .   X  f  (vn)  {dvY  =  a  maximum.     [150] 

Applying  Equa.  [149],  this  becomes 

p  =  ]zne-hHv^^+v,^^  . . .  f„»)  (^y)n  =  ̂   maxlmum.  [151] 
It  is  evident  that  P  is  a  maximum  when 

i>i  -\-  V2'  -\-  •  •  •  Vn   =  3i  minimum,  [152] 

that  is,  when  the  sum  of  the  squares  of  the  residuals  has  its  least 
value. 

Equa.  [147]  express  the  conditions  necessary  to  make  P  a 
maximum  or  to  make  the  sum  of  the  squares  of  the  residuals  a 

minimum.  Since  the  function  F  means  multiplication  by  a  con- 
stant, Equa.  [147]  become 

dVi    ,        dV2    ,  dVn 
vi-r~  +  i>2zr  +  •  •  •  Vn—-  =  o. dZi  dZi  dZi 

dVl  dV2    ,  ,,    dVn 

dZ2  dzi  bzi 

dVi    .        dih    ,  dVn 

OZa  OZa  OZn 

[iS3l 
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These  equations  are  equal  in  number  to  the  number,  q,  of  un- 
known quantities,  and  their  simultaneous  solution  gives  the  most 

probable  values  of  the  unknown  quantities.  They  are  usually 
called  Normal  Equations. 

199.  Weighted  Observations. 

If  the  observations  are  of  different  weights,  each  observation 

equation  should  be  used  (Art.  196)  the  number  of  times  denoted 

by  its  weight.  Hence,  in  forming  the  normal  equations  we 

should  multiply  each  observation  equation  by  the  coefficient  of 

the  unknown  and  by  the  weight  of  the  equation.  The  normal 
equations  in  this  case  are  as  follows: 

dZi  dZi 

=  o. 

o. =  o. 

[154] 

This  same  result  will  be  obtained  if  we  first  multiply  each  ob- 
servation equation  by  the  square  root  of  its  weight.  This  shows 

that  multiplying  a  set  of  equations  by  the  square  roots  of  their 

weights  reduces  them  all  to  observations  of  weight  unity  (equal 
weights). 

200.   Relation  between  h  and  p. 

If  the  n  observations  have  weights  pi,  p2,  .  .  .  ,.and  the  con- 
stant h  is  hi,  ki,  .  .  .  for  these  observations,  then 

p  =  kie-''^'"^'  .  k^e-^'^'  .  .  . 

=  kih  .  .  .  y^„g-(^''''>'+V'^'  •  •  •  )(dvy,  [155] 

and  hi\^  -j-  k^v^'  -f-  •  •  •  is  to  be  a  minimum.  [156] 
The  conditions  for  this  minimum  are 

7    2       ̂̂ 1      I      7    2       ̂ ^1 

hiVi-—'-Jrki%—^-\-  ■  • dzi  dZ2 

=  o. 

=  o. [157] 
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Equas.  [154]  and  [157]  express  the  same  conditions. 

Hence  p\  :  p2  :  .  -  ■   =  h^  :h^  :  .  .  .  , [158] 

showing  that  the  weight  of  an  observation  varies  as  the  square  of 
the  constant  h  for  the  observation.  Consequently  the  more 

accurate  the  observation  the  greater  the  value  of  h. 

Example.  As  an  illustration  of  the  manner  of  applying  these  equations  to  the 

computation  of  the  most  probable  values  of  the  unknowns,  suppose  that  at  a  tri- 

angulation  station  O  (Fig.  iii),  the  angles  have  been  measured  as  shown. 

Denoting  the  most  probable  values  of  these 

angles  by  zi,  22,  and  zz,  the  measurements  are 

given  by  the  following  equations: 

Zi  =  31°  10'  i7".o, 
Z2  =  40  50  10  .0, 
zz  =  42    10  19  .7, 

Zi  +  Z2  =  72   00  26  .0, 

Zl  +  22  +  Z3  =    114     10    46    .0, 

Z2  +  Z3  =      83     00    30    .2. 

Denoting  by  Vi,  V2,  etc.,  the  residuals  of  the 

different  measurements,  these  may  be  written 

Zi  —  31°  10'  i7".o  =  vi, 

Z2  —  40  50  10  .0  =  V2, 
Zz  —    42    10   19   .7  =  Vz, 

Zl  +  22  —      72     00    26    .0  =  f4, 

Zl  +  Z2  +  Z3  —    114     10    46    -O  =  fs, 

Z2  +  Zs  —      83     00    30    .2   =  Vt, 

which  are  called  observation  equations. 

If  we  apply  equations  (153),  differentiating 

each  V  with  respect  to  the  three  unknown  quantities  in  succession,  we  obtain  the 

normal  equations. 

3  Zl  +  2  Z2  +       Zs  —   217°  21'  29".0  =  O, 
2  Zl  +  4  Z2  +  2  Z3  —  310     01     52    .2   =  O. 

Zl  +  2  Z2  +  3  Zs  -  239    21  35  .9  =  0. 

Solving  these  simultaneously,  we  obtain 

Zl  =  31°  10'  i6".45, 
Z2  =  40  5°  09  -875. 

Zs  =  42    10  19  .90. 

These  are  the  most  probable  values  of  the  angles. 
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201.  Formation  of  the  Normal  Equations. 

It  should  be  observed  that  since  the  observation  equations  are 

linear  in  this  case,  the  differential  coefficients  are  equal  to  the 

numerical  coefficients.  Hence,  to  form  the  normal  equations  we 

may  proceed  as  follows :  For  each  unknown,  form  a  normal  equation 

by  multiplying  each  observation  equation  by  the  numerical  coefficient 

of  the  unknown  in  that  equation,  adding  these  results  and  placing  the 

sum  equal  to  zero.  This  rule  is  simply  a  statement  in  words  of 

what  is  expressed  in  Formula  [153]  as  applied  to  linear  equations. 
If  the  observations  are  of  different  weights,  the  only  change  in 

the  above  rule  is  that  each  observation  equation  is  multiplied 

by  its  weight  as  well  as  by  the  coefficient  of  the  unknown. 

In  regard  to  the  observation  equations  it  should  be  understood 

that  they  are  not  like  ordinary  equations.  They  are  often 

written,  however,  with  zero  in  place  of  the  v  in  the  right  hand 

member.  Observation  equations  cannot  be  multiplied  by  any 

number  or  combined  with  each  other  (except  when  forming  nor- 
mal equations) ;  for  if  this  is  done,  the  weight  of  the  observation  is 

thereby  changed. 
202.  Solution  by  Means  of  Corrections. 

If  the  independent  terms  *  in  the  observation  equations  are 
large,  it  will  often  save  labor  in  the  calculations  if  we  place  the 

unknown  quantity  Zi  equal  to  an  approximate  value  Mi  plus  a 

correction  Zi,  Z2  =  M2  -{-  z^,  etc.  Substituting  these  values  in  the 
original  observation  equations,  we  obtain  a  new  set  of  equations 

in  terms  of  the  corrections  and  in  which  the  independent  terms 

will  be  small.  By  forming  normal  equations  and  solving  as  be- 
fore, we  find  the  most  probable  values  of  the  corrections.  Adding 

these  corrections  to  the  approximate  values,  we  find  the  most 

probable  values  of  the  unknown  quantities  themselves. 

*  The  independent  term  in  any  equation  is  that  term  which  does  not  contain 
any  of  the  unknowns. 
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Example.  In  the  example  just  solved,  suppose  we  assume  for  the  approximate 
values  the  results  of  the  direct  measurements,  and  let  si,  22,  etc.,  represent  the  most 
probable  corrections.     Then  the  observation  equations  become 

Zi       =  o, 

Z2  =  O, 

zs       =0, 

Zl  +  22  +  l".0  =  O, 
Zi  +  Z2  +  Z3  +  O    .7   =  O, 

Z2  +  Z3  —  O  -.5   =  O. 

Forming  the  normal  equations  as  before,  we  have 

3  Zl  +  2  Z2  +      Z3  +  i".7  =  o, 
2  Zl  +  4  Z2  +  2  Z3  4-  I     .2=0, 

Zl  +  2  Z2  +  3  Z3  +  O    .2=0. 

The  solution  of  these  equations  gives 

Zl  =  -o"-SS, 
22  =  -o  .125, 

Zs  =  +0  .20, 

which,  added  to  the  values  observed  directly,  give  the  same  results  as  before. 

203.   Conditioned  Observations. 
If  the  quantities  sought  are  not  independent  of  each  other,  but 

are  subject  to  certain  conditions,  the  solution  must  be  modified 
accordingly.  Each  observation  gives  rise  to  an  observation 
equation,  and  each  condition  may  be  expressed  by  a  condition 
equation.  The  solution  may  be  effected  by  eUminating,  between 

the  two  sets  of  equations,  as  many  unknowns  as  there  are  equa- 
tions of  condition.  From  the  remaining  equations  we  may  form 

the  normal  equations  and  solve  for  the  most  probable  values  of 
the  unknowns.  Substituting  these  values  back  in  the  original 
condition  equations,  we  obtain  the  remaining  unknowns. 

Example.  The  three  angles  of  a  triangle  are  A  =  61°  07'  52".oo,  B  =  76°  50'- 
S4".oo,  and  C  =  42°  01' i2".i5.  The  spherical  excess  is  o2".ii.  The  weights 
assigned  to  the  measured  angles  are  3,  2,  and  2,  respectively.  These  angles  are 

subject  to  the  fixed  relation  ̂ -1-5-1-^=  180°  00'  02".! i. 
Letting  vi,  V2,  %  be  the  most  probable  corrections  to  the  observed  values,  the 

observation  equations  are 
vi  =  vi,  wt.  3 

V2  =  V2,  "2 
Vi  =  V3,  "     2 

and  the  condition  equation  is 

Vi  +  ih  +  V3  —  3".96  =  o.  {d) 
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Eliminating  113,  there  remain 

v\  =  Vi,  wt.  3 

■01  =  V2,  "    2 
V3  =  —vi  —  V2  +  3".g6    "    2 

Forming  the  normal  equations  and  solving, 

vi  =  +o".99, 

V2  =    +1     .485- 

Substituting  these  values  in  equation  (d), 

V3  =  +i".485. 
These  corrections,  added  to  the  measured  angles,  give  the  adjusted  angles,  as 

follows : 
A  =6i°07'52".99, 
B  =  76  so  55  .48, 

C  =  42  01  13  .64.  /^ 

Notice  that  the  discrepancy  is  distributed  inversely  as  the  weights.  This  will 
always  be  the  case  when  each  unknown  is  directly  observed,  and  there  is  but  one 

equation  of  condition;  that  is,  the  correction  to  the  first  is 

and  the  correction  to  the  second  is 

r  X  +3".96  =  +o".99, 

-r  X  +3".96  =  +i".485. 

The  correction  to  the  third  is  the  same  as  the  correction  to  the  second. 

204.  Adjustment  of  Triangulation. 
The  adjustment  of  the  angles  of  a  triangulation  net  naturally 

divides  itself  into  two  parts:  (i)  the  adjustment  for  the  dis- 
crepancies arising  at  each  station,  and  (2)  the  adjustment  of 

the  figure  as  a  whole.  According  to  theory  these  should  all  be 
adjusted  simultaneously  in  order  to  obtain  the  most  probable 
values  of  the  angles.  The  usual  practice,  however,  is  to  deal 
with  the  two  separately.  The  local,  or  station,  adjustment  is 

made  first  if  the  method  of  observing  is  such  that  a  local  adjust- 
ment is  required.  If  the  observations  are  made  in  accordance 

with  the  program  given  in  Art.  44  (sec.  2,  Coast  Survey  in- 
structions) ,  no  station  adjustment  is  necessary.  If  the  angles  are 

measured  by  the  repetition  method  and  the  horizon  is  closed,  the 
error  is  distributed  in  inverse  proportion  to  the  weights  (see 
Art.  203).     If  there  are  conditions  existing  among  the  angles, 
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due  to  measuring  sums  of  the  different  single  angles,  the  adjust- 
ment may  be  effected  by  expressing  these  as  condition  equations 

and  then  forming  normal  equations  and  solving,  as  in  the  ex- 
ample, p.  294. 

This  method  of  making  the  local  adjustment  first  is  justified, 
not  only  on  the  ground  of  saving  labor,  but  also  because  of  the 
well-known  fact  that  the  most  serious  errors  are  those  due  to 

eccentricity  of  signal  and  instrument,  phase  of  signal,  refraction, 

etc.,  which  do  not  appear  to  any  large  extent  in  the  local  ad- 
justment but  which  do  appear  in  the  figure  adjustment.  If 

we  compute  the  precision  of  angles  from  the  discrepancies  noted 
at  each  station,  and  then  estimate  from  these  values  the  error 
of  closure  to  be  expected  in  the  triangle,  we  find  that  these  are 
smaller  than  the  errors  of  closure  actually  occurring,  showing 
the  presence  of  constant  errors,  which  do  not  appear  in  the 
local  adjustment. 

205.   Conditions  in  a  Triangulation. 
The  geometric  conditions  connecting  the  angles  in  a  net  are 

of  two  classes:  (i)  those  which  express  the  relation  among  the 

angles  of  a  triangle  or  other  figure,  and  (2)  those  which  express 
the  relation  existing  among  the  sides  of  the  figure.  If  we  plot, 
for  example,  a  quadrilateral  figure,  starting  from  one  side  as 
fixed,  we  shall  find  that  if  the  sum  of  the  angles  in  three  of  the 
triangles  equals  their  theoretical  sums,  all  sums  in  the  other 
triangles  will  also  (necessarily)  equal  their  theoretical  amounts, 

namely,  180°  -\-  e" .  This  shows  that  of  all  the  possible  angle 
equations  which  might  be  written  for  this  figure  only  three  are 
really  independent. 

In  order  to  determine  the  number  of  angle  equations  in  any 
net,  let  s  be  the  total  number  of  stations,  5„  the  number  of 
stations  not  occupied,  /  the  total  number  of  lines  in  the  figure, 
and  l\  the  number  of  lines  sighted  over  in  one  direction  only; 
then  the  number  of  angle  equations  in  the  figure  is 

l-lx-  s-\-s^-\-\.  [159] 
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In  a  triangle  it  is  necessary  that  all  stations  should  be  occu- 
pied and  that  all  lines  should  be  sighted  over  in  both  directions, 

in  order  to  have  one  angle  equation,  that  is, 

/-5  +  i=3-3  +  i  =  i. 

If  a  new  station  is  added,  it  must  be  occupied  and  the  two  lines 

sighted  over  in  both  directions,  in  order  to  yield  a  new  angle 

equation.  If  this  is  done,  the  quantity  /  —  5  is  increased  by 
2  —  1  =  1.  If  a  line  is  drawn  between  two  stations  already 
located,  /  is  increased  by  i  and  there  is  a  new  angle  equation 

corresponding.  For  each  new  line  sighted  in  one  direction 

only,  I  is  increased  by  i  and  h  is  increased  by  i ,  so  that  the  total 

is  unchanged. 

The  number  of  side  equations  in  a  net  may  be  estimated  as 

fellows:  Starting  with  one  Hne  as  fixed,  it  is  evidently  neces- 
sary to  have  two  more  sides  in  order  to  fix  a  third  point.  Hence, 

in  order  to  plot  a  figure,  we  must  have  at  least  2  (5  —  2)  lines 

in  addition  to  the  base,  that  is,  2  5  —  3  lines  in  all.  Any  addi- 
tional lines  used  must  conform  to  those  already  used,  in  order 

to  give  a  perfect  figure;  hence  the  number  of  conditions  giving 

rise  to  side  equations  will  equal  the  number  of  superfluous  lines, 

that  is,  /  —  2  5  -|-  3,  where  /  is  the  total  number  of  lines  and  s 
is  the  number  of  stations.  It  should  be  observed  that  while 

the  side  equation  is  primarily  a  relation  among  the  sides,  it  is 

also  a  relation  among  the  sines  of  the  angles,  and  this  fact  en- 
ables us  to  adjust  the  figure  by  altering  the  angles. 

206.  Adjustment  of  a  Quadrilateral. 

For  any  quadrilateral  figure  in  which  all  of  the  (eight)  angles 

have  been  measured  there  may  be  found  three  equations  which 

express  the  condition  that  the  triangles  must  all  "close."  There 
are  more  than  three  equations  which  may  be  formed;  but  if 

any  three  of  these  equations  are  satisfied,  the  others  necessarily 

follow  and  hence  are  not  independent.  There  will  also  be  one 

side  equation  expressing  the  condition  that  the  length  of  a  side 

(AB),  when  computed  from  the  opposite  side  {CD),  is  exactly 
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the  same,  no  matter  which  pair  of  triangles  is  employed  in  the 
computation. 

In  selecting  the  three-angle  equations  we  may  take  any  three 
triangles  and  write  an  equation  for  each  expressing  the  con- 

dition that  the  sum  of  the  three  angles  equals  180°  +  e" .  It 
is  advantageoys  in  this  case  to  avoid  triangles  having  small 
angles.  In  selecting  the  side  equation  it  is  well,  however,  to 
select  one  involving  small  angles,  so  as  to  give  large  coefficients 
of  the  corrections.  If  the  angle  equations  were  also  chosen  so 
as  to  involve  the  small  angles,  the  solution  would  be  likely  to 
prove  unstable,  on  account  of  the  equahty  of  some  of  the 
coefficients. 

Fig.  112. Fig.  113. 

A  convenient  method  of  writing  a  side  equation  is  to  select 
some  point,  called  the  pole,  and  write  the  three  directions  from 

it  to  the  other  stations  in  the  order  of  azimuths.  For  example, 
taking  the  pole  at  A,  Fig.  112,  write  first 

AB'AD'AC. 

Then  from  this  write  the  ratios 

AB  AD  AC 

ad'ac'ab' 
the  method  of  forming  which  is  evident.    If  we  now  replace 
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each  line  by  the  sine  of  the  angle  opposite  to  it  in  the  triangle 

which  is  indicated  by  the  fraction,  and  place  the  whole  equal 

to  unity,  we  have 

sin ADB      sin ACD      sin^jBC  ,  ,  , 
sm  ABD      sin  ADC      sin^CjB 

It  may  be  shown,  by  solving  the  different  triangles  and  elimi- 
nating the  sides,  that  this  equation  expresses  the  condition  that 

the  length  oi  AB  as  computed  from  CD  is  the  same  no  matter 

which  route  is  followed  in  the  computation. 

Problem.  Prove  by  a  direct  solution  of  the  triangles  in  Fig.  112  that  Equation 

[160]  is  true. 

Designating  the  angles  by  means  of  the  numbers  shown  in 

Fig.  113,  the  equation  becomes 

sin  2  sin  (4  +  0  sin  8  r  ̂   i 
-^-7 — I  1   .        • — =  I-  161 sin  (i  +  8)  sin  3  sin  5 

Before  this  equation  can  be  used,  however,  it  is  practically 

necessary  to  reduce  it  to  linear  form,  since  an  application  of 

Equa.  [153]  to  any  but  linear  equations  would  be  complicated. 

Suppose  our  equation  to  be  put  in  the  general  form 

sin  (Ml  +  Vi)  ̂   sin  (M3  +  ̂ 3)  r  .  . 
.    .,^    , — r  X    .    ,^..    , — r   •  •  •    =1,  [162J sin  (M2  +  V2)      sin  {Mi  -\-Vi) 

in  which  the  angle  is  written  as  an  approximate  value  M  plus  a 
small  correction  v.  Taking  logs  of  both  members  and  then 

applying  Taylor's  theorem,  we  have,  neglecting  squares  and 
higher  powers, 

log  sin  Ml  +  -—  (log  sin  Mi)  ̂1  +  •  •  • oMi 

-  flog  sin  M2  +  —  (log  sin  M2)  z^  +  •  •  •  j  =  o.     [163] 

The  quantity  — —  (log  sin  Mi)  is  the  variation  per  i''  in  a 
oMi 
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table  of  log  sines,  the  correction  v  being  in  seconds.     Hence, 

placing  81  =  ——  (log  sin  Mi),  etc.,  we  have 

SiVi  —  82V2  +  83^3  —  8iVi+  ■  •  • 

+  log  sin  Ml  —  log  sin  M2  +  •  •  •  =  o.         (164] 

The  algebraic  sum  of  the  log  sines  represents  the  amount  by 

which  they  fail  to  satisfy  the  condition  equation.  Placing  this 

sum  equal  to  I,  the  side  equation  given  above  becomes 

82V2  +  64+5^4+5  +  58^8  -   (5l+8?^l+8  +  83V3  +  S^V^)   -1=0.         [165] 

Example.    Let  us  suppose  that  the  measured  angles  are  (Fig.  113), 

I. 

61°
 

07'  52' 

.00 2. 

38 

28  34 

.90 

3- 
38 

22  19 

.10 

4- 
42 

01  12 

•15 

5- 

29 

14  32 

•85 

6. 

70 

21  59 

.20 

7- 

49 
26  21 

.85 

8. 

30 

57  07 

.10 

These  angles  are  supposed  to  have  been  adjusted  for  local  conditions. 
To  form  the  angle  equations,  take  the  triangles  ABD,  ADC,  and  ABC  for  which 

the  values  of  the  spherical  excess  are  i".36,  i".77  and  i".02,  respectively.  The 
computation  is  shown  in  tabular  form  as  follows: 

1  +  8  92°  04'  59".io 2  38  28  34  .90 

7        49    26  21   .85 
179  59  55  -85 
180  00  01  .36 

3 
4  +  5 

6 

+5".5i 
38°  22'  i9".io 
71  15  45  .00 
70  21  59  .20 

180  00  03  .30 
180  00  01  .77 

5 
6 
7 
8 

-i".S3 

29°  14'  32".8s 
70  21  59  .20 
49  26  21  .85 

30  57  07  .10 180  00  01  .CXJ 
180  00  01  .02 

+o".02 
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This  gives  for  the  three  angle  equations 

(i  +  8)  +  2  +  7  =  180°  00'  oi".36, 
3  +  (4  +  5)  +  6  =  180  00  01  .77, 
5  +  6  +  7  +  8    =  180  00  01   .02, 

or,  written  as  corrections, 

fl+8  +  J^  +  J)?  -  5-51  =  0|-) 
%  +  04+6  +  %  +  1-53        =0, 
V6  -\-  Vi  -\-  Vy  +  Vs  —  0.02    =  O. 

To  form  the  side  equation,  take  the  pole  at  A.    Then  we  have 

AB    AD    AC 

ad' AC' AB' 

sin  2  sin  (4  +  5)    sin  8 
giving 

301 

sin  (i  + 

sin  3 
sm5 

log  sin  2+log  sin  (4+s)+log  sin  8— log  sin  (1+8)— log  sin  3— log  sin  5=0. 

The  computation  of  the  constant  term  of  this  equation  is  given  in  the  following 

table.  The  log  sines  of  those  angles  appearing  in  the  numerator,  together  with 

their  di£f.  for  i"  (in  units  of  the  6th  place  of  decimals)  are  placed  in  the  left-hand 
column,  and  those  in  the  denominator  are  placed  in  the  right-hand  column.  The 
constant  I  is  the  difference  in  the  sums  of  the  log  sines. 

'   Angle. log  sine  (-|-). 
Diff.  i". 

Angle. log  sine  (— ). 

Diff.  I". 
2 

4+5 
8 

9-7939242 
9.9763501 
9.7112329 

+  2.65 

+0.72 

+3-51 

1+8 

3 
S 

9.9997129 

9.7929268 9.6888702 

-0.08 

+  2.66 

+3-76 
9.4815072 

9.4815099 

72 

-27 

Therefore  /=— 2.7. 

The  side  equation  becomes 

2.65  vi  +  0.72  Vi-i^  +  3.51  v%  +  0.08  i^i+s  —  2.66  V3  —  3.76  db  —  2.7  =  o. 

Since  the  observations  are  direct,  all  of  the  observation  equations  take  the  form 
^l-H  =  ̂ '1+8. 

The  eight  observation  equations  and  the  four  condition  equations  are 
written,  and  we  are  ready  to  adjust  the  quadrilateral. 

now 
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207.   Solution  by  Direct  Elimination. 
If  we  select  for  the  four  independent  unknowns  v^,  V3,  v^,  and 

Vs,  and  express  the  four  conditions  in  terms  of  these,  we  have 

^1+8  =  3.015  ̂ ^  -  5.2821)3  -  4-751^5  +  6.6092)8  +  0.2351, 

V2      =  ■  ih, 

V3      =  V3, 

2)4+5  =  -4-015  1)2  +4-282  1)3  +  5.751  1)5-  5.6092)8+3.725, 
2^6  =  ^5, 

2)6  =  4-4.015  2)2  -  5.282  2)3  -  5.751  2)6  +  5.609  2)8  -  5.255, 

2)7  =  -4.0152)2  +  5.2822)3+4.7512)5-6.6092)8  +  5.275, 
2)8  =  Vs. 

From  these  we  form  the  following  normal  equations  (Art. 

198,  Equa.  [153]): 

Const. 

+  58.450 -75-534 

-79-581 
+91-501 

-   75-534 
+  102  .036 
+  105.193 -123.474 

-  79-581 
+  105.193 

+  112.292 -127-388 
+  91-501 

-123.474 

-127-388 

+  151 .282 

-56.527 

+70.329 
+75.589 
-83.678 

The  simultaneous  solution  of  these  equations  will  give  the 

most  probable  values  of  the  corrections. 

208.   Gauss's  Method  of  Substitution. 
In  solving  a  large  number  of  equations  simultaneously  it  is 

convenient  to  use  some  definite  system  of  eliminating  the  un- 
knowns, in  order  to  avoid  labor  and  the  danger  of  mistakes. 

Let  us  suppose  that  the  observation  equations  are  of  the  form 

^  dix  +  hy  +  ciz  +  /i  =  2)1, 

a2X  +  b2y  +  C2Z  -{- k  =  2)2, 

and  that  the  normal  equations  are  represented  by 

[aa]  X  +  [ab]  y  +  [ac]  z  +  [al]  =  o, 

[ah]  X  +  [bb]  y  +  [be]  z  +  [bl]  =  o, 

[ac]  X  +  [be]  y  +  [cc]  z  +  [cl]  =  o. 

[166] 
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in  which  the  brackets  indicate  the  sum  oi  all  the  terms  found 

by  multiplying  the  numerical  coefficients  according  to  the  rule 
on  p.  293. 

If  the  first  normal  equation  be  divided  by  [aa]  and  solved 

for  X,  the  result  is 

_       [ab]     _  [ac]         [al]i 

[aa]         [aa] "      [aa] 
Substituting  this  in  the  second  equation,  we  have 

\  [aa]       I       \  [aa]        /       \  [aa]        I 

This  is  usually  abbreviated 

[6&  .  i]  y  +  [he  .  i]  z  +  [W  •  i]  =  o.  [168] 

Substituting  this  in  the  third  equation,  we  have 

\bc  '  \]  y  -\- [cc  '  \]  z  -\- [d  '  \]  =0.  [169] 

These  two  equations,  [168]  and  [169],  are  called  the  "first 

reduced  normal' equations." 
.Solving  [168]  for  y, 

[hC'l]  [hl'\\. y  =  —   -z  —    ■> 
^        [66.1]       [hh'A 

whence  [cc  •  2]  z  +  [d  •  2]  =  o,  [170] 

in  which  [cc  •  2]  =  [cc  •  i]  —  \tz    \J3C  •  i] 
[hh  •  ij 

and  [cl .  2]  =  [d  .  i]  -  1^^  [U  .  i]. 
\bb  •  ij 

The  solution  of  [170]  gives  the  value  of  z.  By  substituting 

this  in  [168]  and  [169]  the  value  of  y  may  be  found.  Finally, 

from  [166]  the  value  of  x  may  be  found. 

An  inspection  of  [166]  will  show  that  all  coefficients  below  and 

to  the  left  of  a  diagonal  drawn  from  the  x  term  of  the  first  equation 

to  the  z  term  of  the  third  equation  are  duplicates  of  the  others. 

These  may  be  omitted  in  writing  the  equations. 
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Solving  the  equations  in  Art.  207,  p.  302,  by  the  method  of 

substitution  just  described,  we  obtain  the  following  results: 

V2  =  +1.80, 
V3  =  -0.19, 

2)5  =  -0.07, 

vs  =  -0.75- 

Substituting  these  values  in  the  condition  equations,  p.  301, 
we  find  for  the  remaining  unknowns, 

Z^l+8  =  +2.05, 
V7  =  +1.67, 

04+5   =    -0.51, 
H =   -0.83- 

The  final  angles  are  as  follows: 
I. 61°  07' 54."  80 
2. 38   28   36.    70 

3- 

38   22    18.   91 

4- 

42   01    II.    71 

5- 

29    14   32.    78 
6. 70   21    58.   37 

7- 

49    26    23.    52 

8. 
30   57   06.    35 

The  above  is  an  example  of  a  rather  unstable  solution  of  normal 

equations.  It  requires  a  relatively  large  number  of  significant 

figures  to  give  the  corrections  to  two  places  of  decimals. 
209.  Checks  on  the  Solution. 

In  practice  it  would  not  be  advisable  to  proceed  in  the  solution 

of  a  large  number  of  equations  without  some  safeguard  against 

mistakes  of  computation.  A  valuable  check  consists  in  adding 

to  the  normal  equations  an  extra  term  which  is  merely  the  sum 

of  all  the  coefficients  oi  Vi,V2,  etc.,  and  treating  this  term  like  any 

other  term  of  the  equation.  This  is  illustrated  later  in  the 

example  on  p.  313. 
210.  Method  of  Correlatives. 

When  there  are  many  condition  equations,  the  method  of  sub- 
stitution is  likely  to  prove  laborious.  If,  as  is  usually  the  case 

in  triangulation,  the  observations  are  direct  and  equal  in  number 

to  the  number  of  unknowns,  the  "Method  of  Correlatives  "  will 



METHOD   OF  CORRELATIVES  305 

be  found  preferable.  By  this  method  we  eHminate  one  unknown 

for  each  condition  equation,  employing  for  this  purpose  the 
method  of  undetermined  multipliers. 

Suppose  that  we  have  made  m  direct  observations,  Mi,  M2, . . . , 

Mm,  of  m  different  quantities,  of  which  the  most  probable  values 
are 

Zy   =   Ml  -\-  Vi,      Z2    =   M2   +  V2,    .    .    .    ,      Zm   =   Mm  +  ̂m- 

Let  these  m  unknowns  be  connected  by  the  following  n  con- 
ditions equations: 

a-iVi  +  (hV2  .  .  .  ami>m  +  h  =  o, 

Ml   +  62%     .     .     .    bm1>m   +  k    =   O,     \  I171] 

the  a's  being  the  coefficients  in  the  first  equation,  the  6's  those  of 
the  second,  etc.  The  quantities  k,  k,  etc.,  represent  the  amounts 

by  which  the  observations  fail  to  satisfy  the  condition  equations. 

If  the  original  condition  equations  are  not  linear  in  form,  they 

must  be  made  so  by  a  method  similar  to  that  given  on  p.  299. 

Since  the  most  probable  values  of  the  v^s  are  to  be  found,  we 
must  have 

Vi^  -\-  V2^  -\-  '  •  '   =  a  minimum,  [172] 

or  Vi  dvi  -\- V2  dv2  +  •  ■  •  =0  [172] 

for  all  possible  values  of  dvi,  dv^,  etc. 

Hence  it  must  hold  true  for  the  equations 

ai  dvi  -\-  (h  dv2  +  '  •  •   =0,  [173] 

&i  dvi  +  b2dVi  +  •  •  '   =  o, 

obtained  by  differentiating  [171].  The  number  of  these  equa- 
tions is  n.  The  number  of  terms  in  [172]  is  m,  m  being  greater 

than  n.  Let  the  first  equation  in  [173I  be  multiplied  by  ki,  the 

second  by  ̂2,  etc.,  and  Equa.  [172]  by  —  i.  The  products  are 
then  added,  giving 

(fli^i  +  hki  +  •  •  •   —  ̂ 1)  dvi 

+  {(hh  +  &2^2  +   •  •  •    —  ̂ '2)  ̂^^  +  •  •  •    =  O.      [174I 
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The  ̂ 's  are  to  be  so  determined  that  this  equation  will  hold  true. 
This  equation  will  be  satisfied  if  the  coefficient  of  each  differential 

in  it  is  placed  equal  to  zero,  that  is,  if 

hai  +  ̂2&i  +  •  •  •  kJi  =  Vi, 

ki(h  +  kibi  +   •   •   •  knh  =  ̂ 2, 

[175] 

Substituting  these  values  of  Vi,  V2,  etc.,  from  Equa.  [175]  in 

Equa.  [171],  we  obtain 

ki  [aa]  +  ̂2  [ab]  -+■■■'  kn  [al]  -\-  k  =  o, 

h  [ab]  +  h  [bb]  +  •  •  •  K  {bl\  +k=o, 
[176] 

The  solution  of  these  equations  gives  the  values  of  ̂ 1,  ̂2,  ̂3, 

etc.,  which  are  the  correlatives  of  the  condition  equations.  By 

substituting  these  values  in  Equa.  [176]  the  v^s  are  found.  Since 
the  form  of  Equa.  [176]  is  the  same  as  that  of  normal  equations, 

it  is  evident  that  they  may  be  solved  by  the  method  of  substitu- 
tion. 

In  case  the  observations  are  of  different  weight,  the  minimum 

equation  would  be 

p\i>i   +  pii>i  +  •  •  •  pm'oJ'  =  a  minimum,  [177] 

and  the  other  equations  would  be  modified  accordingly. 

Example.  As  an  illustration  of  the  method  of  correlatives  we  will  use  the  same 
quadrilateral  that  was  adjusted  by  the  method  of  direct  elimination.  The  obser- 

vation equations  are  eight  in  number  and  all  of  the  form 

The  four  condition  equations  are 

Angle  equations 

Side  equation, 

2.65  Vi  +  0.72 1»4+6  +  3.51  J'8  -F  0.08  »i-H  —  2.66  Vi  —  3.76  Vi  —  2.70  =  o. 

J'l-1-8  =  I'l+S, 

V2.        =  Vi, 

Vl+%  +  % 

+  VT- 5-Si 

. 

0, 

■         V3  +  Vi+5 +  f6  + 

1-53 

= 

0, 

.    ,Vi-\-Vi  + »7  +  »8  - 

-  0.02 

= 

0. 
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The  coefficients  of  the  corrections  are  then  tabulated  as  follows: 
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V. 

a. 
b. 

c. d. 

I'l+S 

+  1 

^ 
+0.08 

^2 

+  1 

+  2.65 V7 

+  1 

+  1 

Vi 

+  1 

-2.66 

Vi+i 

+  1 

+0.72 

ve 

+  1 

+  1 

f6 

- 

+  1 

-3-76 

Vs 

+  1 

+3-SI 

Substituting  these  in  the  angle  equations, 

(1  +  8) +  2.058  —  0.094  X 
+  2.058  —  0.094  X 
+  2.058  —  0.406 

0.08    =  +2.05 

2.65    =  +i.8i =  +1.65 

+5.51    Check 

3       =  —0.43s  +  2.66    X  —0.094  =  —0.19 
(4  +  S)  =  — 0-43S  +  0-72    X  -0.094  =  —0.50 

6        =  —0.435  ~  0.406  =  —0.84 
—  1.53    Check 

=  —0.4064  —  3.76  X  —0.094  =  —0.05 
=  —0.435  ~  0.406  =  —0.84 
=  +2.058  —  4.06  =  +1.65 
=      0.406  +  3.51    X  —0.094  =  —0.74 

+0.02    Check 

The  coefficients  of  the  correlative  Equa.  [176]  are  tabulated  as 
follows : 

aa. ab. ac. ad. bb. 
be. bd. cc. cd. 

dd. 

Vi-H 

+  1 +0.08 

0.0064 
f2 

+  1 
+  2.65 7.0225 

f7 

+  1 
+  1 

+1 

V3 

+  1 

-2.66 

7.0756 V4+5 

+  1 

+0.72 

0.5184 Wb 

+  1 +  1 

+1 

Vi 

* 

+1 

-3-76 

14.1376 
Vs 

+1 

+3-51 

12.3201 
Sum 

+3 

+  1 

+  2.73 

+3 

+  1 

-1.94 

+4 

-0.25 

+41 .0806 
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The  correlative  equations  are  therefore 

I.  3  ̂1  +  o  +  ̂3  +  2.73  ki  —  5.51  =  o 
II.   o  +  3h  +  ks—  1.94  ki  +  1.53  =  o 

III.  ̂ 1  +  ̂2  +  4  ̂3  —  0.25  ̂ 4  —  0.02  =  O 
IV.  +2.73  ̂ 1  —   1.94^2  —  0.25  ̂ 3  4-  41.0806  ifei  —   2.7     =0 

The  solution  of  these  equations  gives  for  the  correlatives, 
ki  =  +2.058, 
ki  =  -0.435, 

kz  =  —0.406, 
ki  =  —0.094. 

Applying  these  equations  to  the  measured  angles,  we  obtain 
the  final  angles. 

Measured  Angles.       Correction.       Seconds  Corrected. 

(1  +  8)  92°04'S9"-io  +  2".os 
2  38  28  34  .90  +  I  .81 
7    49  26  21  .85  +  I  .65 

o5'oi".i5 

36  .71 23  -50 01  .36 
e"  =  01  .36 

00  .00  Check 

3   38°  22'  i9".io  —  o".i9 
(4  +  S)  71  IS  45  -oo  -  o  .50 

6   70  21  59  .20  —  o  .84 

i8".9i 

44  -SO 58  .36 

oi".77 

01  -77 

00  .00  Check 

5  29°  14' 32"-85  -  o".o5 
6  70  21  59  .20  —  o  .84 
7  49  26  21  .85  +  I  .65 
8  30  57  07  .10  -  o  .74 

32".8o S8  .36 23  -SO 
06  .36 

00  .00  Check 

The  check  of  the  side  equations  is  as  follows: 

2.6s  X      1.81  =      4.80 
0.^2  X  —0.50  =  —0.36 

3.^1  X  -0.74  =  —2.60 ^  +1.84 

-0-85 

—0.08  X  2.05 

+2.66  X  —0.19 

+3-76  X  -0.05 

+2.69 

(Should  equal  2.70.) 

—0.16 

-0.49 

—0.20 
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If  the  sums  of  the  log  sines  are  again  computed  (see  p.  301), 

using  the  corrected  seconds,  they  will  be  found  to  equal  9.481  5090 
for  both  columns. 

211.   Method  of  Directions. 

The  method  of  correcting  the  directions  instead  of  the  angles  is 

particularly  applicable  when  the  measurements  have  been  taken 

by  the  method  of  directions,  Art.  43.  In  the  United  States 

Coast  Survey  office  it  is  the  usual  practice  to  erhploy  this  method 

of  adjusting,  whether  the  observa- 
tions were  made  by  the  direction 

method  or  by  the  method  of  repe- 
tition. 

In  the  quadrilateral  adjusted  in 

Arts.   208-210,  let  us  denote  the 
directions  by  the  numbers  i  to  12 

(Fig.   114)  and  the  corrections  to 

those  directions  by  the  same  num- 
bers,   (i),    (2),    etc.,    enclosed   in 

parentheses.     Each    angle    is    ex- 
pressed as  the  difference  of  two  directions;  that  is,  the  angle 

—  4  -|-  5  means  the  angle  between  the  directions  marked  4  and  5. 
The  four  condition  equations  are  the  same  as  before  except  as 
to  the  cKange  in  notation. 

Fig.  114. 

Angle  Equations 

Side  equation, 

-(4)  +  (5)-(i)  +  (3)-(ii)  +  (i2)-5-5i  =  o. 

-(5)  +  (6)-(7)  +  (9)-(io)-F(ii)-fi.53  =  o. 

-(2) +  (3) -(7) +  (8)-   (4)+  (6)-o.o2=o. 

-5.31  (11)  +  2.65  (12)  -I-  3.04  (7)  -I-  0.72  (9)  -  3.51  (2) 

+  3-59  (3)  -  o-o8  (i)  -I-  2.66  (10)  -  3.76  (8)  -  2.7  =  o. 

If  CD  were  a  fixed  line  obtained  by  a  previous  adjustment,  the 

corrections  (9)  and  (10)  would  be  omitted.  The  angle  equations 

could  be  simplified  in  this  case  by  selecting  two  equations  which 

involve  angles  depending  upon  those  two  directions. 
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The  first  table  for  the  coefiicients  of  the  corrections  is  given 
below. 

Direction. 

a. 
b. 

c. 

d. 

I 

—  I 

+0.08 
2 

—  I 

-3-Si 

3 

+  1 

+  1 

+3-59 

4 

—  I 

—  I 

5 

+  1 

—  I 

+  1 

6 

+  1 

7 

—  I 

—  I 

-r3-04 

8 

+  1 

-3.76 

9 

+  1 

+0.72 lO 

—  I 

+  2.66 II 

—  I 

+  1 

-531 

12 

+  1 

+  2.65 

The  remainder  of  the  work,  that  is,  the  calculation  of  co- 

efficients ^aa,  ̂ ab,  etc.,  and  the  solution  of  the  numerical  equa- 
tions, is  carried  out  as  in  the  preceding  example  (Art.  210).  The 

solution  of  the  normal  equations  gives  the  corrections  to  the 
directions.  The  correction  to  any  angle  is  the  difference  of  the 
corrections  to  the  directions  of  its  sides. 

212.  Adjusting  New  Triangulation  to  Points  already  Adjusted. 

In  the  quadrilateral  shown  in  Fig.  115  the  triangle  BDE  is  sup- 
posed to  have  been  previously  adjusted.  Point  C  is  determined 

by  the  directions  i,  2,  and  3  in  connection  with  the  directions 
along  the  sides  of  the  fixed  triangle,  and  also  by  directions  4,  5, 
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and  6,     The  directions  to  be  found  are  i,  2,  3,  4,  5,  and  6. 
directions  as  taken  from  the  field-notes  are  as  follows : 

3" 

The 

Point  sighted. 
Direction  after  local 

adjustment. 
Corrected  seconds. 

Ate 

D 
B 
E 

0       »        // 

0  00  00.00 

123  49   24.97 
207  52  33  50 

AtD 

A 
C 
E 
B 

0      /        1) 

0  00  00.00 

296  57  55-83 
311  12  14.48 
258  27  57.39 

00.67 

12.69 

57-18 

AtE 

D 
C 
B 

0          /            /r 

0    00    00.00 

13    38    27.54 81     28    43.98 

01.32 

43-05 

AtB 

F 
E 
C 
D 

0    00    00.00 
122    32     II .29 

150    38    41.62 
168    19    14.81 

01  .06 12.56 

15-48 

In  taking  directions  from  this  table,  the  corrected  seconds 
should  be  used  whenever  an  adjustment  has  been  made. 

The  number  of  angle  equations  in  the  figure  is  /J—  5  +  i,  or 
6  —  4  +  1  =3.  The  number  of  side  equations  is  /  —  2  5  +  3, 
or  6  —  8+3  =  1.  Since,  however,  the  exterior  triangle  is 
already  adjusted,  there  will  be  but  two  angle  equations  needed 
in  the  adjustment.  For  these  two  angle  equations  take  the 
triangles  DCE  and  BEC] 

then  -  (a)  +  (i)  -  (3)  +  (/)  -  (6)  +  (4)  =  o 
and  -(i)  +  {b)  -  (5)  +  (6)  -  (c)  +  (2)  =  o. 
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But  since  the  exterior  lines  are  not  to  be  changed,  {a),  (/), 
(b),  and  (c)  are  all  zero. 

The  absolute  terms  in  the  angle  equations  are  found  as  fol- 
lows: 

-(a)  +  (i)  i3°38'26".22 
-is)  +  if)  14  14  i6  .86 
-(6)  +  (4)  152  07  26  .50 

180  00  09  .58 
180  00  00  .02 -09".s6 

-(i)  +  W  67°S9'i5".5i 
-(5)  +  (6)  84  03  08  .53 
—  (c)  +  (2)  28  06  29  .06 

179  59  53   -lo 180  CXD  00  .08 

+6".98 

For  the  side  equation  take  the  pole  at  C. 

sin(-(2)+(^))    sin(-(i)+(Z>))    sin(-(3)+(f))  ^  ̂ 

sin  (-(.)  +  (3))  *  sin  (-  (c)  +  (2))  *  sin  (-(«)+  (i))        ' 
Tabulating  the  log  sines, 

log  sin  (+)  dit.  I'" 
-(2)  +  ((f)  i7°4o'33"-86  9-4823521  +66.1 
-(i)  +  ib)   67  50  15  .51  9.9666666  +  8.6 
-(3)  +  (0  14  14  16  .86  9.3908478  +83.0 8.839866s 

log  sin  (— ) 

-ie)  +  is)  38°  29'  s8".65    9.7941460  +26.S 
—  (c)  +  (2)  28  06  29  .06    9.6731464  +39.5 
—  (a)  +  (i)  13  38  26  .22    9.3726010  +86.7 8.8398934 

8665 

constant  =        —269 

The  side  equation  is  therefore 

+6.61  X  -  (2)  +  0.86  X  -  (i)  +  8.30  X  -  (3) 

—  2.65  X  (3)  -  3.95  X  (2)  -  8.67.x  (i)  -  26.9  =  o. 

Carrying  out  the  same  process  as  outlined  in  Art.  210,  we  have 
the  following: 
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TABLE  OF  COEFFICIENTS. 
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Direc- 
tion. 

a. b. c. Sum. aa. ab. ac. 05. bb. be. hs. cc. 

cs. 

I 

+1 

—I 

-  9-53 
-  9-S3 

+1 

—I 

-  9-53 
-  9.S3 

+1 

+  9-S3 +9-53 90.8209 90.8209 
2 

+1 

—  10.56 -  9.56 

+1 

—10.56 -9.56 

III. 5136 100.9536 

3 

—I 

-10.9s 

-"•95 

+1 

+10. 95 +11. 9S 119.9025 
130.852s 

4 

+1 
+  I 

+1 
+  I 

S 

—  I —  I 

+1 

+1 

6 

—  I 

+  1 

0 

+1 

—  I 

+1 

Total.... 
+4 

—2 

+1.42 
+3-42 

+4 

-1.03 

+0.97 
322.2370 

322.6270 

From  these  sums  we  derive  the  correlative  equations. 

CORRELATIVE  EQUATIONS 

Number. *,. K 

h. 

Const. Check. Sum, 

I 

2 

3 

+4 

—  2 

+4 +     1.42 

-     1.03 

+322.24 

+   9.56 

-  6.98 —  26.9 

+    12.98 —      6.01 

+295 -73 +     3-42 
+     0.97 

+322.63 

It  should  be  observed  that  the  "constant  "  terms  are  taken 

directly  from  the  condition  equations.  The  "sum  "  term  con- 
tains the  sum  of  the  coefficients  of  the  ̂ 's.  The  "check" 

term  is  the  algebraic  sum  of  the  constant  and  sum  terms.  The 
solution  is  given  in  detail  in  the  following  table:  The  different 

operations  are  indicated  in  the  left-hand  column.  The  factors 
by  which  the  equations  are  multiplied  are  in  the  right-hand 
column. 

2 

IX-^ 4 

+4 

—  I -1.03 

+0.71 

-6.98 

+4.78 

—  6.01 

+6.49 
Factor 

II 

+3 
-0.32 —  2.20 

+0.48 

3 

IX     '-^^ 

llx     °-
^^ 3 

+322.24 —  0.50 

—  0.03 

—  26.9 

—  3-39 

—  0.24 

+295-73 
—     4.61 

+     0.0s 

-0-3S5 

III 
+321.71 

-3053 

+291.17 
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The  preceding  table  is  an  abbreviated  form  of  the  method  of 

substitution  explained  in  Art.  208. 
The  correlatives  are  found  as  follows: 

I. II. III. 

Const. 
+9.56 

—2.20 

-30.53 

^3  =  ̂^^  =  +0.0949 

321.70            ̂ ^^ h +0.135 

-0.03 

ki-    ̂ ^-+0.7433 
,      8.208 ki  =   =  —2.052 

4 
h 

-1.487 
-2.230 

ki 

+8.208 

Calculating  the  corrections  for  the  correlatives, 

I. 

2. 

3. 

4. 
5- 

6. 

kl 

h 
kz 

-  2.052 -0.743 

—  0 . 904 
-3-699 

+0.743 
—  I  .002 

+  2.052 

-1.039 

+  I.OI3 

—  2.052 

-0.743 

+  2.052 
+0.743 

—  0.262 

-2.052 

-0.743 

+  2.795 

Applying  these  corrections  to  the  directions,  we  have  the 

final  adjusted  values 

Dir.  No. Observed  directions. Correction. Corrected  seconds. 

4 
5 
6 

I 

2 

3 

0  00  00.00 

123  49  24.97 
207  52  33  SO 

13  38  27.54 
150  38  41.62 
296  57  55  83 

// 

—  2.05 -0.74 

+  2.80 

-3.70 
—0.26 

+  I.OI 

II 

57-95 24-23 

36.30 23-84 

41-36 56.84 

213.  The  Precision  Measures. 

Referring  to  the  equation  of  the  curve  of  error,  Art.  197, 

y  =  ke' 

-h^x^ 

I149] 
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we  see  that  there  are  two  constants  to  be  determined  for  any 
particular  set  of  observations.  These  two  constants  are  not 

independent,  however,  as  will  be  shown.  The  total  area  be- 
tween the  curve  and  the  X  axis  was  taken  equal  to  unity;  there- 

fore 

*J  —00 

e-f^'^'dx  = 

--  I, 

«^0 e-'^^'^'dx  = 

.  1 

-  2> 

-^'^'hdx  = 
h 
2k 

or 

from  which 

In  order  to  integrate  this  expression  let  t  =  hx  and  dt  =  h  dx. 

Then  I    e-''dt=.f   e-^'^'hdx. 

Multiplying  this  equation  by 

e-''dt=    I     e-'^'dh, 

we  have 

/     e-''dt\  =  11     e-^'^^+'^'^hdxdh 

=    r   '     ̂ ,dx  f  e->''^'+-'^-2h){i+x')dh Jo       2  (i  +  x^)      Jo 

1     f^      dx  if,         ,     "1°°       ̂  
=  -   I     — -^=-   tan-^x     ==-• 2Jol-\-X^        2  L  Jo         4 

0  2 

J                                                 Vt       h 
and    ==  — r  > 2  2k 

h 
or  k  =  —=y  [178] Vtt 

which  shows  the  relation  between  the  two  constants. 
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The  equation  of  the  curve  of  error  may  now  be  written 

y  =  -^e-''^%  [179] 

214.  The  Average  Error. 
The  average  error  (t?)  is  the  arithmetical  mean  of  the  errors, 

all  taken  with  the  same  sign.  To  derive  an  expression  for  the 
average  error,  we  see  from  equation  (142)  that  /  {x)  dx  is  the 
probability  that  an  observation  will  fall  between  the  limits  x 

and  X  -\-  dx\  that  is,  it  represents  the  proportion  of  all  the  errors 
that  will  probably  fall  within  these  limits.  Hence,  if  n  observa- 

tions are  made,  the  number  in  this  strip  will  he  nf  (x)  dx.  The 
sum  of  all  the  observations  will  be 

/»« 

n  j     xj{x)dx, 

xf(x)dx. 0 

The  average  error  equals  the  sum  of  the  errors  divided  by  the 
number,  that  is, 

rj  =  2  I     xf  (x)  dx 

Jo 

=  ̂   re-^'^'xdx 
■Vtt  

Jo 

=   ^  f  e-^'''{-2h^x)dx 

=  -i-=.  [180] 
A  Vtt 

215.  The  Mean  Square  Error. 

The  mean  square  error  {n)  of  an  observation  is  the  square 
root  of  the  arithmetical  mean  of  the  squares  of  the  errors.  Since 

the  number  of  errors  between  x  and  x  -\-  dx  is  nj  {x)  dx,  the 
svmi  of  the  squares  of  these  errors  is 

nx^f{x)dx. 
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The  sum  of  the  squares  of  all  the  errors  is 

n  I     x^f{x)dx. 1/  —00 

Therefore  ^,2  =  _^  T    e-^^'"'' x^  dx.  (d) 
V  TT  t' — 00 

But  -5=/     e-'''^Vx  =  i,    or      /      e-'^'^' dx  =  ~ 

If  we  differentiate  this  with  "respect  to  /f  as  the  independent 
variable,  we  obtain -2h  f 

«/ — 0 
r'^'^'x^dx=  --^-  {e) 

Substituting  (e)  in  (d), 

M=T^-  [181] 
hV2 

216.  The  Probable  Error. 

The  probable  error  (r)  of  an  observation  is  an  error  such  that 
one  half  the  errors  of  the  series  are  greater  than  it  and  the  other 
half  are  less  than  it;  that  is,  the  probability  of  making  an 
error  greater  than  r  is  just  equal  to  the  probability  of  making 
an  error  less  than  r. 

The  probability  that  an  error  of  an  observation  will  fall  be- 
tween the  limits  x  and  x  -\-  dx  is  /  (x)  dx.  The  probability 

that  the  error  will  fall  between  the  limits  -\-r  and  —  r  is  given 
by 

f{x)dx  =  ̂   I      e-^'^'dx  =-, 

by  the  definition. 

To  integrate,  let  t  =  hx,  and  dt  =  h  dx, 

Then  -^  r\-''dt  =  -. 
■Vtt^O  2 

If  we  evaluate  this  integral  for  assumed  values  of  hr  and 
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then  interpolate  for  the  value  of  hr  corresponding  to  |,  we 
find  it  to  be  0.47694. 

Therefore  r  =  ̂ ^.  [182] n 

All  the  precision  measures  have  now  been  expressed  in  terms 

of  h,  and  it  is  evident  that, 

r  =  0.8453  V  [183] 

=  0.6745  n.  [184] 

The  mean  square  error  (m)  is  the  largest,  and  the  probable 

error  (r)  is  the  smallest,  of  the  three  precision  measures. 

Any  one  of  the  three  precision  measures  may  be  used  to  com- 
pare the  relative  accuracy  of  different  series  of  observations, 

provided  the  different  series  are  made  under  the  same  condi- 
tions, so  as  to  be  affected  by  the  same  constant  errors.  In 

Europe  the  mean  square  error  has  been  used  more  than  the 

probable  error;  in  the  United  States  the  probable  error  is  gen- 
erally employed.  There  are  some  advantages,  however,  in  the 

use  of  the  average  error  (77).  Theoretically  it  is  slightly  less 

accurate  than  either  of  the  others;  but  inasmuch  as  the  quan- 
tity itself  is  an  estimate  of  an  uncertainty  in  measurement, 

this  objection  is  not  a  serious  one.  The  value  of  77  lies  between 
the  values  of  /x  and  r.  The  method  of  computing  n)  is  simpler, 

as  will  be  shown  later,  than  the  computation  of  either  /x  or  r. 

Since  in  Equa.  [158]  it  was  shown  that  p  varies  as  /j^,  it  follows 
that 

^OC-OC^OC^QC/^2;  [185] 
If     M      r 

that  is,  the  weights  of  the  different  observations  on  a  quantity 

vary  inversely  as  the  squares  of  the  precision  measures. 
If  p.  is  the  precision  measure  of  a  direct  observation  of  weight 

I,  and  /io  is  the  precision  measure  of  the  mean,  then  since  the 

weight  of  the  mean  is  n,  the  number  of  observations, 

MO  =      /- 

(/) 
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217.   Computation  of  the  Precision  Measures. 

Direct  Observations  of  Equal  Weight.  To  find  m,  the  mean 

square  error  of  an  observation,  suppose  that  we  have  n  direct 

observations  of  equal  weight  made  on  a  quantity  M,  and  that 

the  results  are  Afi,  M2,  .  .  .,  and  that  Mq  is  the  most  probable 

value.    Let  the  errors  be  Xi,  X2,  .  .  .  and  the  residuals  i^i,  z)2,  .  .  .  . 
Then  in  this  case  the  residuals  are 

vi  =  Ml-  Mo, 

V2  =  Ml  —  Mo- 

and 

.  =  v^2^- 
If  Mo  were  the  true  value  of  M,  the  residuals  would  be  the 

same  as  the  true  errors,  and  in  that  case 

M  =  \/Sf .  [x86] 
n 

But  in  any  limited  number  of  observations  this  is  not  sufi&- 
ciently  exact.     To  obtain  a  more  accurate  expression,  place 

Mo-\-Xo  =  M; 
then 

Xi  =  Ml-  {Mo  +  xo)  =  vi  —  Xo, 

0C2  =  M2  —  {Mo  +  Xo)  =  z^  -  a:<), 

Squaring,  adding,  and  dividing  by  n, 

Z^  =  ij^  =  -  (^1)2  _  2^^  ̂ y  _^  nxo^)). 
n  w 

Since  ̂ v  =  o,  Art.  195,  this  reduces  to 

n  n 

The  real  value  of  Xq  is  unknown;  it  may  be  taken  as  approxi- 
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mately  equal  to  the  mean  square  error  of  Mq,  which,  from 

Equa.  (/),  is 

/^o=-7=;  [187] 

Vn 

whence  y?  =  -=l_  -|-  - 

2 

n         ̂  

Therefore  ^  =  V  ̂ ^-  [188] 
n  —  1 

To  find  ixq,  the  mean  square  error  of  the  mean  value,  we  have, 
by  Equa.  (/), 

From  Equa.  [184], 

MO  =  V  —7="^ — 7-  I189] 
n  {n  —  I) 

=  0.6745  V  ̂^ 

i,
2 

r  =  0.6745  V^^^^ —  [190] w  —  I 

To  =  0.6745  V       , 
and  ro  =  0.6745  V  —f^ — r-  [191] 

n{n  —  1)  i-  y  1 

To  find  the  average  error  (77)  of  a  single  observation,  we  see  that, 
from  Equa.  [188], 

-  ^ 

On  the  average  the  values  of  these  residuals  will  be 

* /w  —  I 

^      n 

W^- 

,   n  —  1 ^2  =  V   •  ̂' 

Adding  and  dividing  by  n, 

n        '      n        n        ̂       n 

ti. 
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y/n  {n  —  i) 
[192] ■  X"    . 

vq  =      — ~ 

[193] 

n  Vn  —  I 

The  probable  error  is  sometimes  computed  from  the  average 
error  in  order  to  avoid  computing  the  squares  of  the  residuals. 

From  Equa.  [183],  - 
0-8453  X^  r      1 

r  =     ,    ,     ̂   .  [194] Vw  {n  —  I) 

0.8453  S^  r     .1 
and  ro  =   7===-  [195] n  Vn  —  I 

Evidently  the  mean  error  may  also  be  computed  from  rj. 
218.   Observations  of  Unequal  Weights. 
If  the  observations  have  unequal  weights,  let  pi,  p2,  etc.,  be 

the  weights;  then 

M  Mi. 

fjLo  =  — ,-— - )  Ml  =  —7= ,    etc. 

V-^p'  Vp, 
By  Art.  199,  if  each  observation  is  multiplied  by  the  square 

root  of  its  weight,  the  observations  are  all  reduced  to  weight 
unity.     The  residuals  are  therefore 

^iV^i,        V2VP2,    etc. 

Applying  Formulae  [188]  to  [195]  to  these  residuals,  we  have 

M=v/.^^  Ml n  —  1 

__sj  2k 
pi  {n  —1)  \.  yii 

2^p(n-i) 
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yj%pv
' 

f  =  0.674s  V'^^ —  ^199] 
n  —  1 

n  =  0.6745  V  xT — \  •  t2°°J 
pi  {n  - 1) 

Also, 

To  =  0.6745  4/  —^   -•  [201] 
V   2^p{n-  i) 

V  =    J  =>  [202J V«  (w  —  i) 

V^i(w-  l) 

V2;/>(w-i) 
i?o  =     ,~1       =*  I204J 

from  which 

r  =  0.8453  »?»  [205] 

ri  =  0.8453  m,  [206 J 

ro  =  0.8453  ̂ 70-  '  [207I 

219.  Precision  of  Functions  of  the  Observed  Quantities, 

Suppose  that  a  quantity  M  is  defined  by 

M  =  Ml  +  M2, 

where  Mx  and  Mt  are  independent  and  are  observed  directly. 

Let  the  mean  square  error  (m.s.e.)  of  M\  be  mi,  and  let  that  of 

Ml  be  iLi2,  the  m.s.e.  of  the  function  M  being  denoted  by  \ip.  If 

we  suppose  the  errors  in  the  determination  of  M\  to  be  x/,  x-l' , 

Xi",  .  .  .  ,  and  those  of  M2  to  be  0C2' ,  oc^' ,  x^'" ,  •  .  .  ,  then  the 
real  errors  of  M,  computed  from  the  separate  observations  on  Mx 
and  Ml,  will  be 

Xx   ±  Xi,     Xx'  db  0^' ,  .  .  .  , 
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_  ̂X^  +  2  ̂X],X2  +  ̂X2^ 

and  lip"  = n 

n 

But  the  '^Xix^i,  terms  will  cancel  out,  because  in  the  long  run 
there  will  be  as  many  +  as  —  products  Xioc^  of  the  same  magni- 
tude. 

Therefore  ^    m/  =  mi^+M2^  [208] 

From  Equas.  [183]  and  [184]  it  is  evident  that 

rp"^  =  n^  +  ̂ 2^  [209] 
and  17/  =  -q^  -j-  772^  [210] 

Let  us  suppose  that  the  function  is  defined  by 
M  =  aiMi, 

where  ai  is  a  constant;  then  the  real  errors  of  M  will  be 

aiXi,        aiXi",        aiXi",  .  .  .  , 

and  MF^  =  ̂ ^^  =  a,W, n 

or                                hf  =  aiiJLi.  [211] 

By  combining  [208]  with  [211]  it  is  clear  that  if 

M  =  aiMi  +  02^2  +  flsAfa  +  •  •  •  , 

then                                  m/  =  2^'^''  ^212] 

r/  =  2aV,  [213] 

17/  =,  2)«V-  [214] 

Suppose  that  the  function  is  of  the  general  form  indicated  by 

M  =f{M^,M2,Mz,  ....).  (g) 

Let  Ml  =  ai  -\-  mi,  M2  =  02  -\-  nh,  etc.,  in  which  ai  is  a  close 
approximation  to  Mi,  02  is  a  close  approximation  to  M2,  and  Wi 

and  nh  are  small  corrections  such  that  their  squares  may  be 

neglected.  We  may  regard  wi  and  W2,  etc.,  as  containing  the 

real  errors  oi  Mi,  M2,  .  .  .  ,  and  m,  ij^,  .  .  -  may  be  considered 
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as  the  mean  square  errors  of  Wi,  W2,  etc.     Substituting  in  (g), 
we  have 

M  =f  {{ai  +  mi),  (02  +  W2)  .  .  .  ). 

Expanding  this  function  by  Taylor's  theorem  and  denoting 

/  (ai,  02,  .  .  .  )  by  M', 

M  =  M'+mi--   \-nh-   h  •  •  •  ,  {h) odi  ach 

in  which  the  terms  containing  the  squares  and  higher  powers  of 

Wi,  W2,  .  .  .  have  been  omitted.     Then  the  m.s.e.  of  M  is  the 
same  as  the  m.s.e.  of  the  terms  in  Qi). 

By  Equa.  [212],  this  is 

or,  with  sufficient  accuracy,  \ 

Similarly, 

and  V  =  ,4fJV.^[fJV....  b.l 
It  should  be  observed  that  in  the  preceding  cases  the  unknowns 

are  supposed  to  be  independent  of  each  other.  If  the  quantities 

Ml,  M2,  etc.,  are  functions  of  the  same  variable,  a  different  pro- 
cedure is  necessary. 

Also,  in  case  the  unknowns  are  subject  to  any  number  of  con- 
ditions,- the  computation  of  the  precision  measure  of  any  function 

must  be  so  modified  as  to  take  into  account  the  effect  of  these 

conditions. 
220.  Indirect  Observations. 

The  computation  of  the  precision  of  the  adjusted  values  in  the 

case  of  indirect  observations  is  more  compUcated  than  in  the 
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case  of  direct  observations,  because  it  is  necessary  to  know  the 

weight  of  each  of  the  unknowns,  and  this  can  only  be  found  by 

the  solution  of  equations  similar  to  the  normal  equations. 

It  may  be  shown  that  if  there  are  n  observations  on  q  un- 
knowns, thep 

.=v/^ 
[218] 

n  —  q 

where  /x  is  the  m.s.e.  of  an  observation  of  weight  unity. 

If  pz  is  the  weight  of  an  unknown,  then  the  m.s.e.  of  this  un- 
known is 

fJ^z   =  —7=    =    V 

Vp,      .    Pz{n  -  q) 

[219] 

\/^. Similarly,  r  =  0.6745  V-^= — >  [220] 
n  —  a 

r^  =  0.6745  V  —p- — ^ '  [221] 

and  17  =        ̂      — 1  [222] V  w  in  —  q) 

Vz  =     .7  •  (223] 
Vp.n  {m  -  q) 

221.   Caution  in  the  Application  of  Least  Squares. 

In  applying  the  preceding  principles  it  should  be  kept  in  mind 

that  the  ordinary  adjustment  by  the  method  of  least  squares 

deals  with  the  accidental  errors  only  and  can  tell  us  nothing 

about  the  constant  or  systematic  errors  which  may  affect  the 

results  of  observation.  The  "probable  error  "  may  therefore  be 
far  from  the  true  error  because  such  constant  errors  are  present. 

We  should  think  of  the  precision  measures  as  indicating  the  de- 
viation of  the  result  from  the  mean  result  of  a  large  number  of 

such  observations,  rather  than  its  deviation  from  the  true  value. 

It  is  usually  true  that  the  constant  or  the  systematic  errors  are 
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far  more  serious  than  the  accidental  errors;  the  observer  should 
be  continually  on  the  watch  for  constant  errors  which  may  affect 

his  result.  So  long  as  the  conditions  under  which  a  measure- 
ment is  made  remain  exactly  the  same  the  systematic  errors  are 

likely  to  be  the  same  and  are  therefore  not  observed.  The 
presence  of  such  errors  is  most  likely  to  be  observed  when  the 
conditions  are  varied  as  much  as  possible.  If  observations  are 
made  at  different  temperatures,  or  under  different  conditions  of 
illumination,  or  with  different  instruments,  the  variations  of  the 
results  are  usually  greater  than  when  the  conditions  are  not 
changed.  These  variations  indicate  the  presence  of  systematic 
errors  and  often  enable  the  observer  to  estimate  their  magnitude. 

The  computation  of  the  most  probable  value  improves  the 
result  with  respect  to  the  accidental  errors,  but  leaves  the  more 
serious  form  of  error  untouched.  The  futility  of  multiplying 
observations  and  adjusting  them  for  the  purpose  of  removing  the 
small  accidental  errors,  and  at  the  same  time  failing  to  remove 

the  large  constant  error,  may  be  illustrated  by  the  results  ob- 
tained by  a  marksman  who  holds  his  rifle  steadily  and  places  all 

his  shots  in  a  small  group,  but  whose  rifle  sights  are  so  far  out  of 

alignment  that  his  shots  all  strike  far  from  the  bull's-eye.  Of 
what  use  is  the  large  number  of  shots  under  those  circumstances  ? 
An  adjustment  of  his  results  by  least  squares  would  correspond 
to  an  attempt  to  find  the  center  of  his  group  of  shots,  and  would 

tell  nothing  about  the  distance  from  the  bull's-eye.  A  study  of 
the  causes  of  the  error  so  that  he  could  make  an  adjustment  of 
his  sights  would  accomplish  more  toward  hitting  the  mark  than 
an  infinite  number  of  shots  find  under  the  original  conditions. 
Of  course  the  comparison  is  quite  untrue  in  one  respect;  the 
marksman  knows  where  his  mark  is,  while  the  observer  can  never 
know  the  true  value  of  the  quantity  he  is  measuring. 

While  the  method  of  least  squares  may  not  show  directly  the 
presence  of  constant  errors,  a  study  of  the  precision  of  the  results, 
and  a  knowledge  of  the  law  governing  the  behavior  of  accidental 
errors,  may  enable  the  observer  to  detect  the  presence  of  constant 
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error,  or  at  least  to  decide  whether  it  is  probably  present,  and 

consequently  to  so  modify  his  methods  of  observing  as  to  reduce 
the  effect  of  such  constant  error.  Variations  in  the  result  which 

are  greater  than  the  error  of  observation  shown  by  the  precision 
measures  is  likely  to  mean  that  systematic  error  is  present.  This 
tracing  of  errors  to  their  sources,  and  the  consequent  modification 

of  instruments  and  methods,  may  constitute  the  most  important 
application  of  least  squares. 
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PROBLEMS 

Problem  i.    The  following  angles  are  measured  at  station  O. 

AOB  =  31°  10'  i5".6  weight  (i) 

BOC  =  19  21  17  .4  "  (i) 

AOC  =  so  31  33  .5  "  (2) 
COD  =  38  so  16  .0  "  (2) 
BOD  =  s8  II  32  .0  "  (i) 

AOD  =  8g  21   SI   .5  "  (i) 
Adjust  the  angles. 

Problem  2.    The  angles  of  a  triangle  are  as  follows: 

A  53°  S3' 38".94  wt.  (3) 

B  79  22  s6  .17  "  (4) 

C    46  43  29  .27      "    (2) 

The  spherical  excess  is  2".83. 
Adjust  the  triangle. 
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Problem  3.  The  angles  of  a  quadrilateral  are  as  follows,  the  numbers  correspond- 
ing to  those  in  Fig.  113.  The  weights  are  all  unity.  The  spherical  excess  may  be 

neglected. 

1.  23  31  12  .5 

2.  37  01  22  .5 

3-  67  35  38  -3 

4.  51  SI  26  .7 

5.  29  56  50  .0 
6.  30  35  33  .2 

7-  72  37  35  -o 
8.  46  49  47  -5 

The  sum  angles  are 

Adjust  the  quadrilateral. 

8  +  1  70°2i'os".o 
2  +  3  104  37  00.  o 

4  +  5  81   48  20  .8 
6  +  7  103    13  08  .4 
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FORMULA 

SERIES 

x^   ,    cfi        x'   , 

li       \1      \l 
x^   ,    x^       xf^  , 

X^  2  0^  -LTX^     . 
tan  X  =  x-\   —   h 

3        15        31S 

6        40        112 

tan  ̂ a;  =  a;   • 3        5        7 

BINOMIAL  THEOREM 

(a  +  hT  =  a"*  +  wa»*-i6  +  ̂  ̂̂   ~  ̂^  o^-^ft^  +  • 

MACLAUREN'S  THEOREM 

TAYLOR'S  THEOREM 

LOGARITHMIC   SERIES 

log(i  +  ̂ )=M(:.-^  +  j-^+-- 

log(i-*)  =  -M(a;  +  ̂  +  j  +  ̂  + 

OTHER  SERIES 

I 

=  X -^  X  •\-  0^  -\-  0?  -\- 
\  —  X 

  ;    =  \—  X-\-  0^  —  1?  -\- I  +  ̂ 
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ELLIPSE   AND   SPHEROID 

.      a2  -  6^ 

/  = 
0"
 

a  —  b 

Am  — 

N  = 

Ra  = 

(i  -e^s,m^<t>r 

  a   

(i  —  e^  sin^  <f>)^ NRm 

N  cos''  a  +  i?m  sin"  a 

Mean  radius  =  p  =  VNRm- 

CONSTANTS 

logio  «  =  M  loge  X. 

M  =  modulus  of  system  of  common  logarithms 

=  0.434  2945- 

log  M  =  9.637  7843. 

IT  =  3.141  592  65.    log  =  0.497  1499- 

^ —  =  57-29577.  log  =  1.758  1226. X 

180°    X    60'  ,  ,     A       -  '    =  3437-747-  log  =  3.536  2739 

•K 

180°  X  60'  X  60"  ..01,   =  206  264.8.  log  =  5.314  4251. 

■K 

=  — ^—r,  =  -■ — 77  =  :   rr    (Approx.) arc  I         sm  i         tan  i 

arc  i"  =  0.000  004  848  137.         log  =  4.685  5749. 

  r,  =  206  264.806  =  number  of  seconds  in  the  radian. arc  I 

arc  i"  =  about  0.3  inch  at  distance  of  one  mile. 

CLARKE   SPHEROID    (1866) 

o  =  6  378  206.4  meters.  log  =  6.804  6985. 

6  =  6  356  583.8  meters.  log  =  6.803  2238. 

(Clarke's  value  of  meter,  3.280  8693  feet.) 
0  =  6  378  276.5  legal  meters.  log  =  6.804  7033. 

6  =  6  356  653.7  legal  meters.  log  =  6.803  2285. 
(U.  S.  legal  meter,  39.37  inches  or  3.280  8333  feet.) 
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COAST  SURVEY  SPHEROID    (1909) 

o  =  6  378  388  ±  18  meters'. 

1  =  297.0  ±0.5. 
b  =  6  356  909  meters. 

RELATION  BETWEEN  UNITS  OF  LENGTH 

(Legal)  Meters  in  one  foot  =  0.304  8006.  log  =  9.484  0158. 
Feet  in  one  Gegal)  meter     =  3.280  8333.  log  =  0.515  9842. 
Inches  in  one  G^gal)  meter  =  38.37. 
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TABLE  L  — TABLE  FOR  DETERMINING  RELATIVE  STRENGTH 
OF  FIGURES  IN   TRIANGULATION 

- 

10° 
12" 

14° 
16° 

18° 
20° 

22° 
24° 

26° 

28° 
30° 35° 40° 

45° 

50° 
55° 60°

 

65° 70° 

75° 80° 85° 
90° 

10 428 359 
12 359 295 253 
14 315 253 214 187 
16 284 225 187 162 143 

18 262 204 168 143 126 
113 

20 245 189 153 130 113 100 91 

22 
232 177 142 11 103 91 

.81 
74 

24 22i 167 134 111 
95 

83 74 

67 
61 26 213 160 126 104 89 77 

68 61 

56 

51 
28 206 153 120 99 83 

72 
63 57 

51 

47 43 

30 199 148 115 
94 79 68 

59 53 

48 

43 40 33 
35 188 137 106 

85 
71 60 

52 

46 
41 37 

33 27 23 

40 179 129 
99 

79 65 
54 

47 41 36 

32 

29 23 

19 

16 

45 172 124 93 74 60 50 
43 

37 32 

28 25 

20 

16 13 11 

50 167 119 89 

7Q 

57 
47 

39 

34 

29 26 23 

18 14 11 

(^ 

8 
55 162 115 86 

67 
54 44 37 32 

27 24 

21 

16 

12 10 8 7 5 

60 159 112 83 
64 51 

42 35 30 

25 

22 19 14 

11 

9 7 5 4 4 
65 155 109 80 

62 

49 
40 33 

28 
24 21 

18 

13 

10 

7 6 5 4 3 2 

70 152 106 78 60 
48 

38 32 
27 23 

19 17 12 9 7 5 4 3 2 2 1 
75 150 104 76 

58 
46 

37 30 

25 

21 18 

16 

11 8 6 4 3 2 2 1 1 1 
80 147 102 74 

57 

45 36 
29 24 

20 17 15 10 

7 5 4 3 2 1 1 0 0 
85 145 100 73 55 43 34 

28 23 19 16 

14 

10 

7 5 3 2 2 1 0 0 0 0 

90 143 98 
71 

54 
42 

33 27 
22 19 

16 13 

9 6 4 3 2 1 0 0 0 0 
95 140 96 

70 53 
41 

32 
26 

22 

18 15 13 

9 6 4 3 2 0 0 0 0 
100 138 95 

68 51 

40 
31 

25 
21 17 14 12 8 6 4 3 2 0 0 0 

105 136 93 
67 50 39 30 

25 20 17 14 

12 8 5 4 2 2 0 0 
110 134 91 

65 
49 38 30 

24 
19 

16 13 

11 7 5 3 2 2 1 

115 132 
89 

64 48 37 29 
23 

19 

15 13 

11 7 5 3 2 2 1 
120 129 88 62 

46 
36 

28 
22 

18 15 

12 

10 

7 5 3 2 2 
125 127 86 

61 
45 35 27 22 18 14 12 

10 

7 5 4 3 2 
130 125 84 

59 
44 

34 

26 
21 

17 
14 12 

10 

7 5 4 3 

135 122 
82 

58 
43 

33 
26 

21 
17 

14 

12 10 

7 5 4 
140 119 80 

56 
42 32 

25 20 17 14 

12 10 8 6 
145 116 77 

55 41 
32 

25 
21 

17 15 13 

11 9 
150 112 75 

54 
40 

32 
26 

21 
18 16 15 13 

152 111 75 
53 

40 

32 

26 

22 19 

17 16 

154 110 74 53 41 33 
27 23 

21 

19 

156 108 74 
54 

42 
34 

28 
25 

22 
158 107 74 

54 

43 
35 30 27 

160 107 74 
56 

45 38 
33 

162 107 76 
59 48 42 

164 109 79 63 
54 166 113 86 

71 

168 122 98 
170 143 
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TABLE   II.  —  CORRECTION   FOR  EARTH'S  CURVATURE  AND 
REFRACTION 

Dist. Corr. Dist. 
Corr. 

Dist. Corr. 

Miles. Feet. Miles. Feet. Miles. Feet. 

1 0.6 21 253.1 41 964.7 
2 2.3 

22 
277.7 42 1012.2 

3 5.2 23 303.6 43 1061.0 

4 9.2 24 330.5 44 
1111.0 

5 14.4 

25 

358.6 

45 
1162.0 

6 20.6 
26 

388.0 

46 

1214.2 
7 28.1 

27 
418.3 

47 

1267.7 

8 36.7 
28 

449.9 
48 

1322.1 
9 46.4 

29 
482.6 

49 
1377.7 

10 
57.4 

30 
516.4 

50 
1434.6 

11 69.4 
31 

551.4 
51 

1492.5 

12 82.7 32 587.6 52 1551.6 
13 97.0 33 624.9 53 1611.9 
14 112.5 34 663.3 54 1673.3 15 129.1 

35 
703.0 55 1735.8 16 

146.9 
36 

743.7 56 1799.6 17 165.8 37 785.6 57 1864.4 18 185.9 38 828.6 58 1930.4 19 
207.2 

39 
872.8 59 1997.5 

20 229.5 
40 

918.1 60 2065.8 
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TABLE    IIL  — SHORT    TABLE    OP    FACTORS    FOR    REDUCTION 

OF  TRANSIT  OBSERVATIONS 

Top  Argument  =  Star's  Declination  (S). 
Side  Argument  =  Star's  Zenith  Distance  (f). 

[For  factor  A  use  left-hand  argument.    For  factor  B  use  right-hand  argument.    Fcjr  factor  C 
use  bottom  line.) 

f 

0° 10° 

15° 

20° 
25° 

30° 

35° 
40° 

45° 

50° 

55° 

60° 65° 

70° 

89°
 

V 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
0.03 0.03 0.03 0.04 0.05 

5 0.09 0.09 0.09 0.09 0.10 0.10 0.11 0.11 0.12 0.13 0.15 0.17 0.21 0.25 

85 

10 0.17 0.18 0.18 0.19 0.19 0.20 0.21 0.23 0.25 0.27 0.30 0.35 0.41 
0.51 

80 15 0.28 0.26 0.27 0.28 0.29 0.30 0.32 0.34 0.37 0.40 0,45 0.52 0.61 0.76 75 
20 0.34 0.35 0.35 0.36 0.38 0.40 0.42 0.45 0.48 

0.53 0.60 0.68 0.81 
1.00 

70 
25 0.42 0.43 0.44 0.45 0.47 0.49 0.52 0.55 0.60 

0.66 0.74 0.85 
1.00 

1.24 65 

30 0.50 0.51 0.52 0.53 0.55 0.58 0.61 0.65 0.71 
0.78 

0.87 
1.00 1.18 1.46 

60 
35 0.57 0.58 0.59 0.61 0.63 

0.66 0.70 0.75 0.81 0.89 1.00 1.15 1.36 1.68 
55 

40 0.64 0.65 0.67 0.68 0.71 0.74 
0.78 0.84 0.91 

1.00 
1.12 1.29 1.52 1.88 

50 

45 0.71 0.72 0.73 0.75 0.78 0.82 0.86 0.92 
1.00 1.10 1.23 1.41 

1.67 2.07 

45 
50 0.77 0.78 0.79 0.82 0.85 0.89 0.94 

1.00 1.08 1.19 
1.34 

1.53 1.81 2.24 

40 

55 0.82 0.83 0.85 0.87 0.90 0.95 
1.00 1.07 1.16 1.27 1.43 1.64 1.94 2.40 35 

60 0.87 0,88 0.90 0.92 0.96 1.00 1.06 1.13 1.22 1.35 1.51 1.73 2.05 2.53 30 
65 0.91 0.92 0.94 0.96 1.00 1.05 1.11 1.18 1.28 1.41 

1.58 
1.81 2.14 2.65 25 

70 0.94 0.95 0.97 
1.00 1.04 1.09 1.15 1.23 1.33 1.46 1.64 1.88 2.22 

2.75 
20 

75 0.97 0.98 1.00 1.03 1.07 1,12 1.18 1.26 1.37 1.50 1.68 1.93 2.29 2.82 15 
80 0.98 1.00 1.02 1.05 1.09 1.14 1.20 1.29 1.39 1.53 1.72 

1.97 
2.33 

2.88 10 
85 1.00 1.01 1.03 1.06 1.10 1.15 1.22 1.30 1.41 

1.55 
1.74 1.99 2.36 2.91 5 

90 1.00 1.02 1.04 1.06 1.10 1.15 1.22 1.31 1.41 1.56 1.74 2.00 2.37 2.92    0 

TABLE   IV.  —  DIURNAL  ABERRATION    (/c) 

Lati- 
Declination =  S. 

tude 

0° 10° 

20° 

30° 

40° 

50° 

60° 

70° 

75° 

80° 

85° 

" s J s s s J 5 J 5 s i 

0 0.02 0.02 0.02 0.02 0.03 0.03 0.04 0.06 0.08 0.12 
0.24 10 0.02 0.02 0.02 0.02 0.03 0.03 

0.04 
0.06 0.08 

0.12 
0.24 

20 
0.02 0.02 0.02 0.02 0.03 0.03 0.04 

0.06 0.08 
0.11 0.23 

30 0.02 0.02 0.02 0.02 0.02 0.03 0.04 0.05 0.07 
0.10 

0.21 40 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.05 0.06 
0.09 0.18 50 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.04 0.05 0.08 0.15 

60 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.04 0.06 0.12 
70 0.01 0  01 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.04 0.08 
80 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.04 
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TABLE  V.  —  CORRECTION  TO  LATITUDE  FOR  DIFFEREN- 

TIAL REFRACTION  =  ̂   {r  -  r'). 
[The  sign  of  the  correction  is  the  same  as  that  of  the  micrometer  diflerence.] 

One-half 
diff.  of 
zenith 

distances. 

Zenith  distance. 

0° 10
° 

20° 

25° 
30° 

35° 

40° 

45° 

0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.5 0.01 0.01 0.01 0.01 0.01 0.01 

0.01 
0.02 1.0 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 

1.5 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.05 
2.0 0.03 0.03 0.04 0.04 0.04 0.05 

0.06 
0.07 

2.5 0.04 0.04 0.05 
0.05 0.06 0.06 0.07 

0.08 

3.0 0.05 0.05 0.06 0.06 0.07 0.08 0.09 0.10 
3.5 0.06 0.06 

0.07 0.07 0.08 0.09 0.10 0.12 
4.0 0.07 0.07 0.08 0.08 0.09 0.10 

0.11 0.13 4.5 0.08 0.08 0.09 0.09 0.10 0.11 0.13 0.15 

5.0 0.08 0.09 0.10 0.10 0.11 0.13 
0.14 0.17 

5.5 0.09 0.10 0.10 0.11 0.12 0.14 
0.16 0.18 

6.0 0.10 0.10 0.11 0.12 0.13 0.15 0.17 0.20 
6.5 0.11 0.11 0.12 0.13 

0.14 
0.16 0.19 

0.22 
7.0 0.12 0.12 0.13 0.14 0.16 0.18 0.20 0.23 

7.5 0.13 0.13 0.14 0.15 0.17 0.19 0.21 0.25 
8.0 0.13 0.14 

0.15 0.16 0.18 0.20 0.23 0.27 
8.5 0.14 0.15 0.16 0.17 0.19 0.21 

0.24 0.29 
9.0 0.15 0.16 0.17 0.18 0.20 0.23 0.26 0.30 
9.5 0.16 0.16 0.18 0.19 0.21 0.24 0.27 0.32 

10.0 0.17 0.17 0.19 
0.20 

0.22 0.25 0.29 0.34 
10.5 0.18 0.18 0.20 0.21 0.23 0.26 

0.30 
0.35 

11.0 0.18 0.19 0.21 0.22 0.25 0.28 
0.31 

0.37 
11.5 0.19 0.20 0.22 0.23 0.26 0.29 0.33 0.39 
12.0 0.20 

0.21 
0.23 0.25 0.27 0.30 

0.34 0.40 
12.5 0.21 0.22 0.24 0.26 0.28 0.31 0.36 

0.42 13.0 
0.22 0.22 0.25 0.27 0.29 0.33 0.37 

0.44 13.5 0  23 0.23 0.26 0.28 0.30 0.34 0.39 
0.45 

14.0 0.23 0.24 0.27 0.29 0.31 
0.35 

0.40 0.47 
14.5 0.24 0.25 0.28 0.30 

0.32 0.36 0.41 0.49 

15.0 0.25 0.26 0.29 0.31 0.34 
0.38 0.43 

0.50 15.5 0.26 0.27 0.29 0.32 0.35 0.39 
0.44 0,52 16.0 0.27 0.28 0.30 0.33 0.36 0.40 0.46 

0.54 16.5 0.28 0.29 0.31 0.34 0.37 0.41 0.47 0.55 
17.0 0.29 0.29 

0.32 
0.35 0.38 0.43 0.49 0.57 

17.5 0.29 0.30 0.33 0.36 0.39 0.44 0.50 0.59 
18.0 0.30 0.31 0.34 0.37 0.40 0.45 0.51 

0.60 18.5 0.31 0.32 0.35 0.38 
0.41 0.46 0.53 0.62 19.0 0.32 0.33 0.36 0.39 
0.43 0.48 0.54 

0.64 19.5 0.33 0.34 0.37 0.40 0.44 0.49 0.56 0.65 

20.0 0.34 0.35 0.38 0.41 0.45 0.50 0.57 0.67 
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TABLE    VL  —  CORRECTION    TO    LATITUDE    FOR    REDUCTION 
TO  MERIDIAN 

[Star  off  the  meridian  but  instrument  in  the  meridian.    The  sign  of  the  correction  to  the 
latitude  is  positive  except  for  stars  south  of  the  equator  and  subpolars.] 

d 

10» 15* 
20» 

22* 24« 26« 

28» 

30* 

'32« 

34* 
36* 38S 

S 

1 
" " " " 

.  " 

" " " 
0.01 0.01 

0.01 
89 

2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 88 
3 0.01 

0.01 
0.01 0.01 0.01 0.01 0.01 0.02 0.02 

0.02 
87 

4 0.01 0.01 0.01 0.01 
0.01 0.02 0.02 0.02 

0.02 
0.03 

86 

5 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.03 
0.03 

0.03 85 

6 0.01 0.01 

0.01
" 

0.02 0.02 
0.02 0.03 0.03 0.03 0.04 0.04 

84 

7 0.01 0.01 0.02 0.02 0.02 0.03 0.03 
0.03 

0.04 
0.04 

0.05 83 
8 0.01 0.02 0.02 0.02 

0.03 
0.03 0.03 0.04 0.04 0.05 0.05 82 

9 0.01 0.02 0.02 0.02 0.03 0.03 
0.04 

0.04 
0.05 0.05 

0.06 81 10 
0.01 0.02 0.02 0.03 0.03 

0.04 
0.04 0.05 0.05 0.06 

0.07 
80 

12 0.01 0.01 0.02 0.03 0.03 0.04 0.05 
0.05 

0.06 0.06 0.07 0.08 78 
14 0.01 0.01 0.03 0.03 0.04 0.04 

0.05 
0.06 0.07 0.07 0.08 

0.09 
76 16 

0.01 0.02 0.03 0.03 0.04 0.05 0.06 
0.07 

0.07 0.08 0.09 
0.10 74 18 

0.01 0.02 0.03 0.04 0.05 0.05 0.06 
0.07 0.08 0.09 0.10 0.12 

72 

20 
0.01 0.02 0.04 0.04 0.05 

0.06 0.07 
0.08 

0.09 0.10 
0.11 

0.13 70 

22 0.01 0.02 0.04 
0.05 0.05 0.06 0.07 0.09 

0.10 

0.11 
0.12 0.14 

68 

24 0.01 0.02 0.04 0.05 0.06 0.07 0.08 
0.09 

0.10 

0.12 0.13 
0.15 

66 
26 0.01 0.02 0.04 0.05 

0.06 0.07 0.08 0.10 0.11 0.12 0.14 0.15 

64 

28 0.01 0.03 0.05 0.05 0.07 0.08 0.09 0.10 0.12 0.13 0.15 
0.16 

62 

30 0.01 0.03 0.05 0.06 0.07 0.08 0.09 
0.11 

0.12 0.14 0.15 
0.17 

60 
32 0.01 0.03 0.05 0.06 0.07 0.08 0.10 

0.11 
0.13 0.14 0.16 

0.18 

58 

34 0.01 0.03 0.05 0.06 0.07 0.09 0.10 
0.11 

0.13 0.15 
0.16 0.18 56 

36 0.01 0.03 0.05 0.06 0.07 0.09 
0.10 

0.12 
0.13 

0.15 0.17 0.19 

54 

38 0.01 0.03 0.05 0.06 0.08 0.09 0.10 
0.12 0.13 0.15 0.17 0.19 

52 

40 0.01 0.03 0.05 
0.07 

0.08 0.09 0.11 
0.12 0.14 0.16 0.17 0.19 50 

45 0.01 0.03 0.05 0.07 0.08 0.09 0.11 0.12 
0.14 

0.16 0.18 0.20 45 

S 

40« 
42« 

44* 
46« 48» 

50S 
52S 

54« 
56S 

58» 
60« 

S 

1 0.01 0.01 0.01 0.01 0.01 
0.01 0.01 0.01 0.01 0.02 

0.02 

89 

2 0.02 0.02 0.02 0.02 0.02 0.02 0.03 
0.03 

0.03 
0.03 

0.03 
88 

3 
10.02 

0.03 0.03 0.03 
0.03 0.04 0.04 

0.04 
0.04 0.05 0.05 87 

4 0.03 0.03 0.04 0.04 0.04 0.05 0.05 
0.06 

0.06 
0.06 .0.07 

86 
5 0.04 0.04 0.05 0.05 0.05 0.06 0.06 0.07 0.07 0.08 0.09 85 

6 0.05 0.05 0.06 0  06 0.07 0.07 0.08 0.08 0.09 0.10 
0.10 

84 
7 0.05 0.06 0.06 0.07 0.08 0.08 0.09 0.10 

0.10 0.11 
0.12 

83 
8 0.06 0.07 0.07 0.08 

0.09 
0.09 0.10 0.11 0.12 0.13 0.14 82 

9 0.07 0.07 0.08 0.09 0.10 0.11 0.11 
0.12 

0.13 
0.14 0.15 81 10 0.07 0.08 0.09 

0.10 
0.11 

0.12 0.13 
0.14 0.15 

0.16 

0.17 

80 

12 0.09 0.10 
0.11 0.12 0.13 0.14 

0.15 0.16 0.17 
0.19 0.20 

78 

14 0.10 0.11 0.12 0.14 0.15 0.16 
0.17 0.19 0.20 0.22 0.23 76 

16 0.12 0.13 0.14 0.15 0.17 0.18 0.20 0.21 0.23 
0.24 0.26 74 

18 0.13 0.14 0.16 0.17 0.18 0.20 0.22 0.23 
0.25 

0.27 0.29 

72 

20 0.14 0.15 0.17 
0.19 0.20 0.22 0.24 0.26 0.28 0.29 0.32 70 

22 0.15 0.17 0.18 0.20 
0.22 

0.24 0.26 0.28 0.30 0.32 
0.34 

68 

24 0.16 0.18 0.20 0.21 
0.23 0.25 0.27 0.29 0.32 0.34 0.36 

66 

26 0.17 0.19 0.21 0.23 0.25 0.27 0.29 0.31 0.34 0.36 0.39 

64 

28 0.18 0.20 0.22 0.24 0.26 0.28 
0.31 

0.33 0.35 0.38 
0.41 

62 
30 0.19 0.21 0.23 0.25 0.27 0.30 0.32 0.34 0.37 0.40 

0.42 
60 

32 
0.20 0.22 0.24 0.26 0.28 

0.31 0.33 
0.36 

0.39 0.41 
0.44 58 

34 0.20 
0.22 

0.24 0.27 0.29 0.32 0.34 
0.37 0.40 

0.42 0.45 
56 

36 0.21 0.23 0.25 0.28 0.30 
0.32 0.35 

0.38 

0.41 0.44 0.47 54 
38 0.21 0.23 0.26 0.28 0.30 0.33 0.36 0.39 

0.41 
0.44 

0.48 

52 

40 0.21 0.24 0.26 0.28 0.31 0.34 0.36 0.39 0.42 0.45 
0.48 

50 
4S 0.22 0.24 0.26 0.29 0.31 0.34 0.37 

0.40 

0.43 
0.46 

0.49 
45 
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TABLE  VIL  — REDUCTION   OF   LATITUDE  TO   SEA   LEVEL 

[The  correction  is  negative  in  every  case.]' 

x^ 
0 

5° 
10° 

15° 

20° 

25° 

30" 

35° 

40° 

45° 

h 

\ 

85° 

80° 

75° 

70° 

65° 

60° 
55° 

50° 

Feet. Meters. " " " " " " " " " 
100 30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 
200 

61 
0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 

0.01 

300 91 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 
400 122 0.00 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 
500 152 0.00 0.01 0.01 0.02 0.02 0.02 0.02 

0.03 0.03 

600 183 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.03 
0.03 

700 213 0.01 0.01 0.02 0.02 0.03 0.03 
0.03 0.04 0.04 

800 244 0.01 0.01 0.02 0.03 0.03 0.04 0.04 0.04 0.04 
900 274 0.01 0.02 0.02 

0.03 0.04 0.04 0.04 
0.05 

0.05 
1000 305 0.01 0.02 

0.03 0.03 0.04 0.05 0.05 0.05 0.05 

1100 335 0.01 0.02 0.03 0.04 0.04 0.05 0.05 0.06 0.06 

1200 366 0.01 0.02 0.03 0.04 0.05 0.05 0.06 0.06 0.06 

1300 396 
0.01 0.02 

0.03 
0.04 0.05 0.06 0.06 0.07 

0.07 
1400 427 

0.01 0.02 0.04 0.05 0.06 0.06 0.07 0.07 
0.07 

1500 457 0.01 0.03 0.04 0.05 0.06 0.07 
0.07 0.08 0.08 

1600 488 ,0.01 0.03 0.04 0.05 0.06 0.07 
0.08 0.08 0.08 

1700 518 0.02 0.03 0.04 0.06 0.07 0.08 0.08 0.09 0.09 

1800 549 0.02 0.03 0.05 0.06 0.07 
0.08 0.09 0.09 0.09 

1900 579 0.02 0.03 0.05 0.06 0.08 0.09 
0.09 

0.10 0.10 

2000 610 0.02 0.04 
0.05 0.07 0.08 0.09 0.10 0.10 0.10 

2100 640 0.02 0.04 
0.05 0.07 0.08 0.09 0.10 

0.11 0.11 
2200 

671 0.02 0.04 0.06 0.07 0.09 0.10 0.11 0.11 0.11 

2300 701 0.02 0.04 
0.06 0.08 0.09 0.10 

0.11 0.12 0.12 
2400 

732 0.02 0.04 0.06 0.08 0.10 0.11 0.12 0.12 
0.13 

2500 762 0.02 0.04 0.07 0.08 0.10 0.11 0.12 0.13 0.13 

2600 792 0.02 0.05 0.07 0.09 0.10 0.12 0.13 0.13 
0.14 2700 823 0.02 0.05 0.07 0.09 

0.11 0.12 0.13 0.14 
0.14 2800 853 0.03 0.05 0.07 0.09 

0.11 0.13 0.14 
0.14 0.15 

2900 884 0.03 0.05 0.08 0.10 0.12 
0.13 

0.14 
0.15 

0.15 
3000 914 0.03 0.05 0.08 0.10 0.12 0.14 0.15 0.15 

0.16 

3100 945 0.03 0.06 0.08 0.10 0.12 0.14 0.15 0.16 0.16 
3200 975 0.03 0.06 0.08 0.11 0.13 0.14 0.16 0.16 

0.17 3300 1006 0.03 0.06 0.09 0.11 0.13 0.15 
0.16 0.17 

0.17 3400 1036 0.03 0.06 0.09 0.11 0.12 0.15 0.17 
0.17 

0.18 
,  3500 1067 0.03 0.06 0.09 0.12 0.14 0.16 0.17 

0.18 
0.18 
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339 TABLE  VII  (Com.).  — REDUCTION  OF  LATITUDE  TO  SEA  LEVEL 
|The  correction  is  negative  in  every  case.] 

\ « 

5° 10°
 

15° 

20° 

25° 

30° 

35° 

40° 

45° 

h 
\ 

85° 

80° 

75° 

70° 

65° 
60° 

55° 

50° 

Feet. Meters. 
" " " '. " " " " " 

3600 1097 0.03 0.06 0.09 0.12 0.14 0.16 0.18 0.18 
0.19 3700 1128 0.03 0.07 0.10 0.12 0.15 0.17 0.18 0.19 0.19 

3800 1158 0.03 0.07 0.10 0.13 0.15 0.17 0.19 0.20 0.20 
3900 1189 0.04 0.07 0.10 0.13 0.16 0.18 0.19 0.20 0.20 
4000 1219 0.04 0.07 0.10 0.13 0.16 0.18 0.20 

0.21 0.21 

4100 1250 0.04 0.07 0.11 0.14 0.16 0.19 0.20 0.21 
0.21 4200 1280 0.04 0.07 0.11 0.14 

0.17 0.19 0.21 0.22 0.22 
4300 1311 0.04 0.08 0.11 0.14 0.17 0.19 0.21 0.22 0.22 
4400 1341 0.04 0.08 0.11 0.15 0.18 0.20 0.22 0.23 0.23 
4500 1372 0.04 0.08 0.12 

0.15 
0.18 0.20 

0.22 0.23 0.23 

4600 1402 0.04 0.08 0.12 0.15 0.18 0.21 0.23 0.24 0.24 
4700 1433 0.04 0.08 0.12 

0.16 
0.19 0.21 0.23 0.24 

0.24 4800 1463 0.04 0.09 0.13 0.16 0.19 0.22 0.24 0.25 0.25 

4900 1494 0.04 0.09 0.13 0.16 0.20 
0.22 0.24 0.25 0.26 

5000 1524 0.05 0.09 0.13 0.17 0.20 
0.23 0.24 

■0.26 

0.26  ; 

5100 1554 0.05 0.09 0.13 0.17 0.20 0.23 0.25 0.26 0.27 

5200 1585 0.05 0.09 0.14 0.17 0.21 0.23 0.25 0.27 
0.27 

5300 1615 0.05 0.09 0.14 0.18 0.21 0.24 0.26 0.27 
0.28 

5400 1646 0.05 0.10 0.14 0.18 0.22 0.24 0.26 0.28 0.28 
5500 1676 0.05 0.10 0.14 0.18 0.22 0.25 0.27 0.28 

0.29 

5600 1707 0.05 0.10 0.15 0.19 0.22 0.25 0.27 
0.29 0.29 

5700 1737 0.05 0.10 0.15 0.19 0.23 0.26 0.28 0.29 0.30 

5800 1768 0.05 0.10 0.15 0.19 0.23 0.26 0.28 0.30 0.30 
5900 1798 0.05 0.11 0.15 0.20 0.24 0.27 0.29 0.30 0.31 
6000 1829 0.05 0.11 0.16 0.20 

0.24 0.27 0.29 0.31 
0.31 

6100 1859 0.06 0.11 0.16 0.20 0.24 0.28 
0.30 0.31 

0.32 6200 1890 0.06 0.11 0.16 0.21 0.25 0.28 0.30 0.32 0.32 
6300 1920 0.06 0.11 0.16 0.21 0.25 0.28 0.31 0.32 0.33 
6400 1951 0.06 0.11 

0.17. 
0.21 0.26 0.29 0.31 0.33 0.33 

6500 1981 0.06 0.12 0.17 0.22 0.26 0.29 0.32 0.33 0.34 

6600 2012 0.06 0.12 0.17 0.22 0.26 0.30 0.32 0.34 0.34 6700 2042 0.06 
0.12 0.17 0.22 0.27 0.30 0.33 0.34 0.35 

6800 2073 0.06 0.12 0.18 0.23 0.27 0.31 0.33 0.35 
0.35 6900 2103 0.06 0.12 0.18 0.23 0.28 0.31 0.34 

0.35 0.36 
7000 2134 0.06 0.12 0.18 0.23 0.28 0.32 0.34 

0.36 0.36 
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TABLE  VII  (Com.)-  — REDUCTION  OF  LATITUDE  TO  SEA  LEVEL 
[The  correction  is  negative  in  every  case.] 

<f> 

5° 
10° 

15° 

20° 

25° 

30° 

35° 

40° 

45° 

h 

\ 

85* 

80" 

75° 

70° 

65° 

60° 

55° 

50° 

Feet. 
Meters. 

" " " " " " " " " 

7100 2164 0.06 0.13 0.19 0.24 
0.28 0.32 0.35 0.36 0.37 

7200 2195 0.07 0.13 0.19 
0.24 

0.29 
0.33 

0.35 0.37 0.38 

7300 2225 0.07 0.13 0.19 0  24 0.29 0.33 0.36 0.37 
0.38 

7400 2256 0.07 0.13 0.19 0  25 0.30 
0.33 

0.36 0.38 0.39 
7500 2286 0.07 0.13 0.20 0.25 0.30 

0.34 
0.37 0.38 0.39 

7600 2316 0.07 0.14 0.20 0.25 0.30 
0.34 0.37 0.39 0.40 

7700 2347 0.07 0.14 0.20 
0.26 

0.31 0.35 0.38 0.40 0.40 

7800 2377 0.07 0.14 0.20 0.26 0.31 0.35 
0.38 0.40 

0.41 
7900 2408 0.07 0.14 

0.21 
0.26 

0.32 
0.36 0.39 0.41 0.41 

8000 2438 0.07 0.14 0.21 0.27 0.32 0.36 
0.39 

0.41 0.42 

8100 2469 0.07 
0.14 

0.21 0.27 0.32 0.37 0.40 0.42 
0.42 

8200 2499 0.07 0.15 0.21 
0.27 0.33 0.37 0.40 

0.42 
0.43 

8300 2530 0.08 0.15 0.22 0.28 0.33 0.37 0.41 
0.43 0.43 

8400 2560 0.08 0.15 0.22 
0.28 0.34 0.38 0.41 0.43 0.44 

8500 2591 0.08 0.15 0.22 0.28 0.34 0.38 0.42 
0.44 0.44 

<600 2621 0.08 0.15 0.22 
0.29 0.34 0.39 

0.42 0.44 0.45 

8700 2652 0.08 0.16 0.23 0.29 0.35 
0.39 0.43 0.45 0.45 

8800 2682 0.08 0.16 0.23 0.29 0.35 0.40 0.43 0.45 0.46 

8900 2713 0.08 0.16 0.23 0.30 0.36 0.40 0.44 
0.46 0.46 

9000 2743 0.08 0.16 0.23 0.30 0.36 0.41 0.44 
0.46 0.47 

9100 2774 0.08 0.16 0.24 0.30 0.36 
0.41 

0.45 0.47 0.47 

9200 2804 0.08 0.16 
0.24 0.31 0.37 

0.42 0.45 0.47 0.48 
9300 2835 0.08 0.17 0.24 0.31 0.37 

0.42 0.46 
0.48 0.48 

9400 2865 0.09 0.17 
0.24 0.31 

0.38 
0.42 0.46 0.48 0.49 

9500 2896 0.09 .  0.17 0.25 0.32 0.38 0.43 0.47 
0.49 0.50 

9600 2926 0.09 0.17 0.25 0.32 0.38 0.43 0.47 0.49 
0.50 

9700 2957 0.09 0.17 0.25 0.32 0.39 0.44 0.48 0.50 0.51 

9800 2987 0.09 0.17 0.26 0.33 0.39 
0.44 0.48 0.50 

0.51 9900 3018 0.09 0.18 0.26 0.33 0.40 0.45 0.48 0.51 
0.52 10000 3048 0.09 0.18 0.26 0.33 0.40 0.45 

0.49 0.51 0.52 
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TABLE  VIIL  — FOR  CONVERTING   SIDEREAL   INTO  MEAN 
SOLAR  TIME 

[Increase  in  Sun's  Right  Ascension  in  Sidereal  h.  m.  s.] 

Mean  Time  =  Sidereal  Time  —  C. 

Sid. Sid. Sid. Sid. 
Sid. 

Corr. Corr. Corr. Corr. Corr. 
Hrs. Min. 

Min. 
Sec. Sec. 

m          s s s s s 

I 0     9  .830 I 
0.164 

31 

5-079 I 

0.003 

31 

0  .085 

2 0   19.659 2 
0.328 

32 

5.242 

2 

0.005 

32 

0  .087 

3 0  29  .489 3 
0.491 

33 

5.406 

3 0  .008 33 

0  .090 

4 0  39  .318 4 

0-655 

34 

5-570 

4 0  .Oil 34 

0.093 

5 0  49  .148 5 

0.819 

35 
5-734 5 

0.014 

35 

0  .096 

6 0  58.977 6 
0.983 

36 

5.898 

6 0.016 

36 

0.098 

7 I     8 .807 7 

1.147 

37 6.062 7 

0.019 

37 O.IOI 

8 I   18.636 8 I.311 

38 

6.225 

8 
0.022 

38 

0.104 

9 I  28.466 9 
I  -474 

39 

6.389 

9 

0.025 

39 0  .106 

10 I  38  .296 10 1.638 

40 

6-553 

10 

0.027 

40 

0.109 

II I  48.125 II I  .802 

41 

6.717 

II 
0.030 

41 

O.II2 

12 I  57-955 12 I  .966 

42 

6.88i 
12 

0.033 

42 

O.I15 

13 

2     7 .784 

13 

2.130 

43 

7-045 

13 

0.035 

43 

O.II7 

14 

2  17.614 

14 

2.294 

44 

7.208 

14 

0.038 

44 

0.120 
15 

2  27.443 

15 

2-457 

45 
7-372 

15 

0.041 
45 

0.123 

16 2  37  273 16 2  .621 

46 

7-536 

16 

0.044 

46 

0.126 
17 

2  47  .102 

17 

2.785 

47 

7.700 

17 

0.046 
47 

0.128 18 2  56.932 18 

2.949 

48 

7.864 
18 

0  .049 

48 

O.I3I 

19 

3     6.762 

19 

3 -113 
49 

8.027 

19 

0.052 

49 

0.134 

20 
3  16.591 

20 3-277 

50 

8. 191 

20 

0.055 

50 

0.137 

21 3  26.421 
21 

3 -440 

51 

8-355 

21 

0.057 

51 

0.139 

22 
3  36.250 

22 

3.604 

52 

8-519 

22 0  .060 

52 

0.142 23 

3  46.080 

23 

3.768 

53 

8.683 

23 

0.063 

53 

0.145 

24 

3  55  909 

24 

3-932 

54 

8.847 

24 

0.066 54 

0.147 
25 

4  .096 55 

9  .010 

25 

0.068 55 

0.150 

26 
4.259 

56 

9.174 26 

0.071 

56 

0-153 

27 

4-423 57 

9.338 

27 

0.074 

57 

0.156 

28 
4-587 

58 

9.502 

28 

0  .076 

58 

0.158 

29 

4-751 59 

9.666 

29 

0.079 

59 O.161 

30 

4-915 60 

9.830 

30 

0  .082 60 

0.164 
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TABLE   IX.  — FOR  CONVERTING  MEAN   SOLAR   INTO 
SIDEREAL  TIME 

[Increase  in  Sun's  Right  Ascension  in  Solar  h.  m.  s.] 

Sidereal  Time  =  Mean  Time  +  C. 

Mean 
Hrs. Corr. Mean Min. Corr. 

Mean Min. Corr. 
Mean 
Sec. Corr. 

Mean 

Sec. 
Corr. 

m s s s s s 

I o 

9.856 
I 

0  .164 

31 

5-093 I 

0.003 

31 

0.085 

2 o 19-713 2 

0.329 

32 

5-257 2 

0.005 

32 

0.088 3 o 29.569 3 

0.493 

33 

5-421 

3 
0  .008 

33 

0.090 

4 o 

39.426 

4 

0.657 

34 
5-585 

4 O.OII 

,34 

0.093 

5 o 

49  .282 

5 0.821 

35 

5-750 

5 

0  .014 

35 

0.096 

6 o 
59  139 

6 
0.986 

36 

5-914 

6 
0  .016 

36 

0.099 

7 I 

8-995 

7 I  .150 37 6.078 7 

0  .019 

37 
O.IOI 8 I 18.852 8 I  -314 

38 

6.242 8 
0  .022 

38 

0.104 

9 I 28.708 9 1-478 
39 

6.407 

9 

0.025 

39 

0.107 

lO 
I 38  .565 

10 

1-643 

40 

6.571 

10 

0.027 

40 

0.110 

II I 
48.421 II 

1.807 

41 

6.735 

II 
0.030 

41 

0.112 12 
I 

58.278 12 
1. 971 

42 

6.900 

12 

0.033 

42 

0.II5 
13 

2 

8.134 

13 

2.136 
43 

7.064 

13 

0.036 

43 

0  .118 

14 

2 17.991 

14 

2.300 
44 

7  .228 

14 

0.038 

44 

0.120 

IS 

2 27  .847 

15 

3.464 

45 7-392 

15 

0.041 

45 

0.123 

i6 2 

37-704 16 2.628 

46 

7-557 

16 

0.044 

46 

0.126 

17 

2 

47-560 

17 

2.793 

47 
7.721 

17 

0.047 

47 

0.129 

i8 2 
57-417 

18 

2.957 

48 

7-885 
18 

0.049 

48 

0.I3I 

19 

3 7-273 

19 

3.121 
49 

8.049 

19 

0.052 

49 

0.134 

20 3 17  .129 
20 

3-285 

50 

8.214 

20 

0.055 

50 

0.137 

21 3 26 .986 
21 

3-450 

51 

8.378 

21 

0.057 

51 

0.140 
22 3 

36.842 
22 3.614 

52 

8.542 

22 

0.060 

52 

0.142 

23 

3 
46.699 

23 

3-778 53 

8.707 

23 

0.063 

53 

0.14S 
24 

3 56.555 

24 

3-943 

54 

8.871 

24 

0  .066 

54 

0.148 

25 

4.107 

55 

9-035 

25 

0.068 

55 

0.151 

26 

4.271 

56 

9.199 

26 

0.071 

56 

0.153 
27 

4-435 

57 
9-364 

27 

0.074 

57 

0.156 28 

4  .600 

58 

9.528 

28 

0.077 

58 

0.160 

29 

4-764 59 9  .692 

29 

0.079 

59 
0.162 

30 

4.928 
60 

9-856 

30 

0  .082 
60 

0  .164 
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TABLE  X.  —  LENGTHS  OF  ARCS  OF  THE   PARALLEL  AND 
THE  MERIDIAN  AND  LOGS  OF  N   AND   R^ 

[Metric  Units.] 

Latitude. 
Parallel. 

Value  of  1°. 

Meridian. 

Value  of  1°. 

LogN. Log  Rm. 

o Meters. Meters. 

0    00 111,321 110,567.2 6.8046985 6.8017489 
30 

1,361 
567.3 6987 7493 

1    00 
1,304 567.6 

6990 
7502 

30 1,283 568.0 
6996 7519 

2    00 
1,253 

568.6 7003 7543 

30 1,215 569.4 7012 
7573 

3    00 
1,169 570.3 7025 7610 

30 
1,114 

571.4 7040 
7654 4    00 1,051 572.7 7057 7704 

30 110,980 574.1 
7076 

7761 
5    00 110,900 110,575.8 6.8047097 6.8017824 

30 
0,812 

577.6 7120 
7894 

6    00 
0,715 

579.5 7146 7971 
30 

0,610 
581.6 7174 8054 

7    00 
0,497 

583.9 7203 8144 
30 

0,375 686.4 
7235 8240 

8    00 
0,245 

589.0 
7270 

8343 
30 

0,106 
591.8 7307 

8452 
9    00 109,959 594.7 7345 8568 

30 
9,804 

597.8 7385 8690 

10    00 109,641 110,601.1 6.8047428 6.8018819 
30 

9,469 
604.5 7474 

8954 11    00 
9,289 608.1 7520 9094 

30 
9,101 

611.9 7570 
9241 12    00 108,904 615.8 7620 9395 

30 
8,699 

619.8 7673 9555 
13    00 

8,486 
624.1 7729 9720 

30 
8,265 

628.4 7786 9892 
14    00 

8,036 
633.0 7845 6.8020070 

30 107,798 637.6 7907 0254 
15    00 107,553 110,642.5 6.8047970 6.8020443 

30 
7,299 

647.5 8035 0639 

16    00 
7,036 652.6 8102 0839 

30 '     6,766 657.8 8171 
1047 

17    00 
6,487 663.3 8242 

1258 

30 
6,201 

668.8 8315 1477 

18    00 
5,906 674.5 

8389 1701 
30 

5,604 
680,4 8465 1930 

19    00 
5,294 

686.3 8544 
2165 

30 
4,975 692.4 8624 

2404 

20    00 104,649 110,698.7 6.8048705 6.8022649 
30 

4,314 
705.1 8789 2900 

21    00 
3,972 

711.6 8874 3155 
30 

3,622 
718.2 8960 3415 

22    00 
3,264 

725.0 9049 3680 
30 

2,898 
731.8 9139 3950 



344 
TABLES 

TABLE  X   (Con.)  —  LENGTHS  OF  ARCS  OF  THE   PARALLEL 
AND  THE  MERIDIAN   AND   LOGS  OF   N  AND  R,„ 

IMetric  Units.] 

Latitude. Parallel. 

Value  of  1°. 

Meridian. 

Value  of  1  °. 

LogN. Log  Rto. 

o Meters. Meters. 

23    00 102,524 110,738.8 6.8029231 6.8044225 
30 

2,143 
746.0 9323 4504 

24    00 
1,754 

753.2 9418 
4788 

30 

1,357 
760.6 9514 

5077 

25    00 100,952 110,768.0 6.8049612 6.8025370 
30 

0,539 
775.6 9711 

5667 

26    00 
0,119 

783.3 
9812 5968 30 

99,692 791.1 9914 6274 
27    00 

9,257 
799.0 6.8050017 6584 

30 
8,814 

807.0 0121 6897 
28    00 

8,364 
815.1 0227 

7215 

30 
7,906 

823.3 0334 
7536 

29    00 
7,441 

831.6 
0443 7862 

30 
6,968 

840,0 
0552 

8190 

30    00 
96,488 110,848.5 6.8050663 6.8028522 

30 
6,001 

857.0 
0774 

8857 

31    00 
95,506 

865.7 0888 
9197 

30 
5,004 

874.4 1002 9539 
32    00 

4,495 
883.2 1117 9883 

30 
3,979 

892.1 1233 6.8030231 
33    00 

3,455 
901.1 1350 0582 

30 
2,925 

910.1 1468 0935 

34    00 
2,387 

919.2 1586 1292 

30 
1,842 

928.3 
1706 1651 

35    00 91,290 110,937.6 6.8051826 6.8032012 
30 

0,731 
946.9 1947 

2375 

36    00 
0,166 

956.2 2069 2741 
30 89.593 965.6 2192 3109 

37    00 

9;014 

975.1 2315 3479 
30 

8,428 
984.5 

2439 3850 
38    00 

7,835 
994.1 2564 

4224 
30 

7,235 111,003.7 
2689 4599 

39    00 
6,629 

013.3 2814 
4976 

30 

6,016 
023.0 2940 5354 

40    00 85,396 111,032.7 6.8053067 6.8035734 30 

4,770 
042.4 3194 6115 

41    00 
4,137 052.2 3321 

6496 
30 

3,498 
061.9 

3448 
6878 

42    00 
2,853 

071.7 3576 7262 
30 

2,201 
081.6 3704 

Z646 
43    00 

1,543 091.4 

3832  ̂ - 

'8031 

30 
0,879 

101.3 

3960 
-^^ 

8416 

44    00 80,208 111.1 4089 
8802 30 

79,532 
121.0 4218 9188 

45    00 78,849 111,130.9 6.8054347 6.8039574 
30 

8,160 
140.8 

4476 
9960 
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TABLE  X    (Cow.)-  — LENGTHS  OF  ARCS  OF  THE   PARALLEL 
AND  THE  MERIDIAN   AND   LOGS  OF  N   AND   Rm 

[Metric  Units.] 

Latitude. 
Parallel. 

Value  of  1°. 

Meridian. 

Value  of  1°. 

LogN. LogRm. 

. Meters. Meters. 
46    00 77,466 111,150.6 6.8054604 6.8040346 

30 
6,765 

160.5 4732 
0731 47    00 

6,058 
170.4 4861 1117 

30 

5,346     ■ 
180.2 

4989 
1502 

48    00 
4,628 

190.1 5118 1887 

30 
3,904 

199.9 5246 2270 

49    00 
3,174 

209.7 5373 2653 

30 
2,439 

219.5 5500 
3034 

50    00 71,698 111,229.3 6.8055628 6.8043416 
30 

0,952 
239.0 

5754 
3796 

51    00 
0,200 

248.7 5880 4175 

30 
69,443 258.3 6006 4552 

52    00 
8,680 

268.0 6131 
4928 

30 
7,913 

277.6 
6256 5302 

53    00 
7,140 

287.1 6380 
5674 30 

6,361 
296.6 6504 

6044 54    00 
5,578 

306.0 6627 6413 
30 4,790 

315.4 6749 6779 
55    00 63,996 111,324.8 

6.8056870 
6.8047144 30 

3,198 
334.0 6991 7506 

56    00 2,395 
343.3 7111 7866 

30 
1,587 352.4 

7230 8223 

57    00 
0,774 

361.5 7348 8578 
30 

59,957 370.5 7465 8929 

58    00 
9,135 

379.5 7582 9279 
30 

8,309 
388.4 7697 

9624 
59    00 

7,478 
397.2 7811 

9968 

30 
6,642 

405.9 7924 6.8050307 
60    00 55,802 111,414.5 6.8058037 6.8050644 

30 
4,958 

423.1 8148 0977 
61    00 

4,110 
431.5 8258 1307 

30 
3,257 

439.9 8366 1633 

62    00 
2,400 

448.2 8474 1956 
30 

1,540 
456.4 8580 2274 

63    00 
0,675 

464.4 8685 
2590 

30 
49,806 472.4 8789 

2900 

64    00 
8,934 

480.3 8891 3208 

30 
8,057 

488.1 8992 3510 

65    00 47,177 111,495.7 6.8059092 6.8053809 30 
6,294 

503.3 
9190 4103 

66    00 
5,407 

510.7 9287 4393 

30 
4,516 

518.0 9382 4678 

67    00 43,622 525.3 9475 4959 

30 
2,724 

532.3 9567 5235 
68    00 

1,823 
539.3 9658 5506 

30 
0,919 

546.2 9747 5772 
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TABLES 

TABLE  X   (Cow.).  — LENGTHS  OF  ARCS  OF  THE   PARALLEL 
AND  THE  MERIDIAN  AND   LOGS  OF  N   AND   RA 

[Metric  Units.] 

Latitude. 
Parallel. 

Value  of  1°. 

Meridian. 

Value  of  1°. 

LogN. Log  Rm. 

- o Meters. Meters. 

69 00 40,012 111,552.9 6.8069834 6.8056034 

30 39,102 
559.5 9919 

6290 

70 00 38,188 111,565.9 6.8060003 6.8056542 
30 

7,272 
572.2 0085 6788 

71 00 
6,353 

578.4 0165 
7029 

30 
5,421 

584.5 0244 7264 

72 00 4,506 590.4 0321 
7495 

30 
3,578 596.2 

0396 7719 
73 00 

2,648 
601.8 0468 7938 

30 1,716 607.3 0539 8153 

74 00 
0,781 

612.7 
0608 

8361 
30 29,843 

617.9 0676 8563 

75 00 
28,903 111,622.9 6.8060742 6.8058759 

30 
7,961 

627.8 0805 8950 

76 00 
7,017 

632.6 
0867 9135 

30 
6,071 

637.1 0927 9314 
77 00 

5,123 
641.6 0984 

9487 

30 
4,172 

645.9 
1040 

9653 
78 00 

3,220 
650.0 

1093 
9814 30 

2,266 
653.9 

1145 9968 

79 
00 1,311 

657.8 
1195 6.8060118 

30 20,353 661.4 
1242 

0258 

80 00 19,394 111,664.9 6.8061287 6.8060394 
30 

8,434 
668.2 

1330 
0523 

81 00 
7,472 

671.4 
1371 0646 

30 
6,509 

674.4 
1409 

0763 

82 00 
5,545 

677.2 
1446 

0873 30 
4,579 

679.9 
1480 0976 

83 00 
3,612 

682.4 

1513  - 

1074 30 
2,644 

684.7 1544 
1163 

84 00 
1,675 

686.9 1571 
1248 

30 10,706 688.9 
1597 1325 

85 00 
9,735 

111,690.7 6.8061620 6.8061395 
30 

8,764 
692.3 1642 

1459 

86 00 
7,792 

693.8 1661 
1517 

30 
6,819 

695.1 1678 1567 

87 00 
5,846 

696.2 1692 1611 
30 

4,872 
697.2 

1705 1648 

88 00 
3,898 

697.9 1715 1679 
30 

2,924 
698.6 1723 1702 

89 00 
1,949 

699.0 1728 
1719 

30 975 699.3 1731 
1729 

90 00 0 111,699.3 6.8061733 
6.8061733- 



TABLES 347 

TABLE  XL— TABLE  OF  LOGARITHMS  OF  RADII  OF  CURVA- 

TURE OF  THE  EARTH'S  SURFACE  IN  METERS  FOR  VARIOUS 
LATITUDES  AND  AZIMUTHS 

[Based  upon  Clarke's  Ellipsoid  of  Rotation  (1866).] 

Azimuth. 
0°  lat. 

1°  lat. 
2°  lat. 3°  lat. 

4»Iat. 6°  lat. 6'  lat. 

Meridian. 6.80175 6.80175 6.80175 6.80176 6.80177 6.80178 6.80180 

5 177 177 
178 178 179 180 

182 
10 184 184 184 

185 186 187 
188 

15 195 195 195 
196 

,  197 

198 
199 

20 209 209 210 210 211 
212 214 

25 227 228 228 
228 229 230 

232 
30 248 249 249 250 250 251 

252 

35 272 272 272 273 273 274 
276 

40 296 297 297 297 
298 299 

300 

45 322 322 322 323 324 
324 

325 

50 348 348 348 348 
349 

350 

351 
55 373 373 373 373 374 

374 
375 

60 396 396 396 
396 

397 
398 398 

65 417 417 
417 418 418 

418 
419 

70 435 435 436 436 436 437 437 

75 450 450 450 450 451 
451 452 

80 461 461 461 461 
462 462 

463 
85 468 468 468 468 

468 
469 

469 

90 470 470 470 470 471 
471 

472 

Azimuth. 
6°  lat. 7°  lat. 8°  lat. 9°  lat. 

10°  lat. 
11"  lat. 12°  lat. 

Meridian. 6.80180 6.80181 6.80183 6.80186 6.80188 6.80191 6.80194 
5 182 184 186 188 190 

193 

196 

10 188 190 192 194 197 
200 

202 15 199 201 203 
205 207 210 213 

20 214 215 217 219 222 
224 

227 

25 232 233 235 237 239 
242 

244 30 252 254 256 257 260 
262 264 

35 276 277 278 
280 

282 
284 

287 
40 300 301 303 304 

306 
308 

310 
45 325 326 328 329 331 333 

335 

50 351 352 353 354 
356 358 

359 
55 375 376 377 379 380 

382 

383 

60 398 399 400 401 403 
404 

406 

65 
419 420 421 422 423 424 426 

70 437 438 439 440 441 442 
443 

75 452 452 453 454 
455 

456 457 

80 463 463 
464 

465 466 467 468 

85 469 470 470 
471 472 

473 474 

90 472 472 473 474 
474 475 

476 
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TABLES 

TABLE  XI  (Co».)-  — TABLE  OF  LOGARITHMS  OF  RADII  OF 
CURVATURE  OF  THE  EARTH'S  SURFACE  IN  METERS  FOR 
VARIOUS  LATITUDES  AND  AZIMUTHS 

[Based  upon  Clarke's  Ellipsoid  of  Rotation  (1866). ] 

Azimuth. 12"  lat. 13°  lat. 14°  lat. 15°  lat. 16°  lat. 17°  lat. 
18°  lat. 

Meridian. 6.80194 6.80197 6.80201 6.80204 6.80208 6.80213 6.80217 
5 196 199 203 206 210 215 219 

10 
202 206 209 

213 217 221 225 

15 213 216 219 223 
227 

231 
235 

20 227 230 233 
236 240 

244 

248 

25 244 247 250 254 
257 

261 
265 

30 264 267 270 
273 276 280 

284 
35 287 289 292 

295 298 
301 

305 

40 310 313 315 318 321 324 
327 

45 335 337 339 342 
344 

347 350 

50 359 361 364 
366 

368 
371 

373 
55 383 385 387 389 391 394 

396 

60 406 407 409 411 413 
415 417 

65 426 427 429 
430 

432 434 

436 

70 443 444 446 447 449 451 453 

75 457 458 460 461 
463 

464 
466 

80 468 469 470 471 473 474 
476 

85 474 475 
476 478 479 

480 
482 

90 476 477 478 480 
481 

482 
484 

Azimuth. 18°  lat. 19°  lat. 20°  lat. 21°  lat. 22°  lat. 23°  lat. 24°  lat. 

Meridian. 6.80217 6.80222 6.80226 6.80232 6.80237 6.80242 6.80248 
5 219 224 228 

234 
239 244 250 

10 225 230 234 
239 

244 
250 

255 
15 235 239 

244 
249 254 

259 

264 20 248 252 
257 262 266 271 277 

25 
265 269 273 

277 
282 287 292 

30 284 287 292 
296 

300 
305 309 

35 305 308 312 
316 320 

324 
329 

40 327 330 
334 

338 
341 

345 350 
45 350 353 357 

360 

364 

367 
371 

50 373 376 379 
382 

386 
389 

392 
55 396 398 401 404 407 

410 413 

60 417 419 422 
424 

427 430 432 

65 
436 438 440 443 445 448 450 

70 453 454 456 459 
461 463 

465 

75 466 468 470 472 473 
476 478 

80 
476 478 

479 481 
483 485 

487 
85 482 483 485 487 489 

490 

492 
90 484 485 487 

489 490 
492 494 
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TABLE  XI  (Cow.).  — TABLE  OF  LOGARITHMS  OF  RADII  OF 
CURVATURE  OF  THE  EARTH'S  SURFACE  IN  METERS  FOR 
VARIOUS  LATITUDES  AND  AZIMUTHS 

[Based  upon  Clarke's  Ellipsoid  of  Rotation  (1866).] 

Azimuth. 24°  lat. 25°  lat. 26°  lat. 27°  lat. 28°  lat. 29°  lat. 30°  lat.  1 

Meridian. 6.80248 6.80254 6.80260 6.80266 6.80272 6.80279 6.80285 
5 250 256 262 268 274 

280 287 

10 255 ,  261 267 273 279 285 
292 

15 264 270 276 282 
288 294 300 

20 277 282 288 293 
299 

305 311 

25 292 297 
302 

308 313 
319 325 

30 309 314 
319 324 

330 335 340 

35 329 333 338 343 348 353 
358 

40 350 354 358 362 
367 

372 
377 

45 
371 

375 379 383 387 391 
396 

50 392 
396 399 403 407 411 415 

55 413 416 
420 423 426 

430 
434 

60 432 435 438 442 445 
448 

451 

65 
450 453 455 458 461 

464 467 

70 465 468 470 473 475 478 
481 

75 478 480 
482 484 487 

489 
492 

80 487 489 
491 

493 495 498 500 

85 492 494 496 498 
501 

503 505 

90 494 496 498 500 
502 504 

507 

Azimuth. 30°  lat. 31°  lat. 32°  lat. 33°  lat. 34°  lat. 
35°  lat. 36°  lat. 

Meridian. 6.80285 6.80292 6.80299 6.80306 6.80313 6.80320 6.80327 
5 287 294 300 307 

314 

322 329 

10 292 298 305 312 
319 326 333 

15 300 306 313 320 326 
333 340 

20 
311 317 324 330 

337 343 350 

25 325 331 
337 343 

349 355 
362 

30 340 346 352 
358 364 

370 376 

35 358 363 369 .   374 
380 385 391 

40 377 382 386 392 
397 

402 

407 

45 396 400 405 410 414 

419 

424 

50 415 419 423 
428 

432 
436 441 

55 434 437 441 445 
449 

453 457 

60 451 455 
458 462 465 469 

472 
65 467 470 473 476 480 483 486 

70 481 484 
486 489 492 

495 
498 

75 492 494 497 500 
502 

505 508 
80 500 502 505 507 510 512 515 
85 505 507 510 512 

514 
517 

519 

90 507 509 511 514 
516 

518 
521 



350 

TABLES 

TABLE  XI  (Cow.).  — TABLE  OF  LOGARITHMS  OF  RADII  OF 
CURVATURE  OF  THE  EARTH'S  SURFACE  IN  METERS  FOR 
VARIOUS  LATITUDES  AND  AZIMUTHS 

[Based  upon  Clarke's  Ellipsoid  of  Rotation  (1866).] 

Azimuth. 36°  lat. 37°  lat. 38°  lat. 39°  lat. 40°  lat. 41°  lat. 42°  lat. 

Meridian. 6.80327 6.80335 6.80342 6.80350 6.80357 6.80365 6.80373 
5 329 336 

344 
351 

359 366 
374 10 333 340 348 355 363 

370 378 
15 340 348 

355 

362 
369 

376 

384 20 350 357 364 371 
378 385 

392 
25 

362 
368 375 382 

388 395 
402 30 376 382 388 394 401 

407 
413 

35 391 
397 

402 
408 414 420 426 

40 407 412 418 
423 429 434 440 

45 424 429 434 
439 

444 

449 

454 
50 441 

445 450 454 459 464 468 

55 457 461 
465 469 

474 
478 

482 
60 472 476 

480 
484 

487 
491 

495 

65 
486 489 493 496 500 

503 507 70 498 
501 504 

507 
510 514 

517 

75 508 510 513 516 
519 

522 
525 

80 515 517 520 523 525 
528 

531 
85 519 522 524 527 529 

532 534 
.   90 

521 523 526 
528 531 

533 
536 

Azimuth. 42°  lat. 43°  lat. 44°  lat. 45°  lat. 
46°  lat. 47°  lat. 48°  lat. 

Meridian. 6.80373 6.80380 6.80388 6.80396 6.80404 6.80411 6.80419 
5 374 382 389 397 404 412 

420 

10 378 385 393 
400 408 415 423 

15 384 391 398 
406 413 420 428 

20 
392 

399 
406 413 420 427 434 

25 402 408 415 422 
429 

436 
442 

30 413 420 426 433 
439 

446 452 
35 426 432 

438 

444 
450 456 462 

40 
440 446 451 

457 462 
468 

474 

45 454 459 464 470 475 
480 485 

50 468 473 478 482 
487 

492 496 

55 482 486 490 495 499 

503 
508 

60 495 499 

502 
506 510 

514 
518 

65 507 510 514 
517 

520 
524 

528 
70 517 520 523 

526 529 

532 
536 

75 525 528 531 534 536 539 
542 80 

531 534 536 539 
542 544 

547 
85 534 537 540 

542 
545 548 

550 
90: 

536 538 541 544 
546 549 

551 



TABLES 

3SI 

TABLE  XI  (Cow.).  — TABLE  OF  LOGARITHMS  OF  RADII  OF 
CURVATURE  OF  THE  EARTH'S  SURFACE  IN  METERS  FOR 
VARIOUS  LATITUDES  AND  AZIMUTHS 

[Based  upon  Clarke's  Ellipsoid  of  Rotation  (1866).] 

Azimuth. 48°  lat. 49°  lat. 50°  lat. 51°  lat. 52°  lat. 53°  lat. 
54°  lat. 

Meridian. 6.80419 6.80426 6.80434 6.80442 6.80449 6.80457 6.80464 
5 420 428 435 443 450 

458 465 

10 423 430 438 445 453 
460 

467 
15 428 

'435 

442 450 
457 

464 471 20 434 441 

448- 

455 462 469 
476 

25 442 449 456 463 
469 476 

482 

30 452 458 465 471 
477 484 490 

35 462 468 474 480 486 
492 498 40 474 479 485 

490 496 
501 506 45 485 490 495 

500 505 510 615 

50 496 
501 

506 510 515 
520 

624 55 508 512 516 520 524 528 533 
60 518 522 526 530 533 537 

641 65 528 531 534 538 
541 

545 
548 

70 
536 539 

542 545 548 551 
554 

75 542 545 548 
551 554 

557 
559 

80 547 550 
553 555 

558 

561 
663 85 550 553 555 558 560 563 566 

90 551 554 556 559 561 
564 

566 

Azimuth. 54°  lat. 55°  lat. 56°  lat. 57°  lat. 58°  lat. 59'  lat. 60°  lat. 

Meridian. 6.80464 6.80471 6.80479 6.80486 6.80493 6.80500 6.80606 
5 465 472 479 486 493 500 

07 10 467 474 481 488 495 

502 
09 15 471 478 485 492 498 505 
11 20 476 483 489 496 

502 
509 15 

25 482 489 495 
501 508 614 

20 

30 490 496 
502 508 514 

519 
25 

35 498 
503 509 515 

520 525 
31 40 

506 512 517 
522 527 532 37 45 515 520 525 630 

534 
539 

43 

50 524 528 533 537 
542 

546 
60 

55 533 537 541 545 548 652 56 
60 541 544 548 552 555 

558 

62 
65 548 551 555 558 

561 564 
67 

70 554 557 560 
563 

566 
569 

72 75 
559 

562 565 568 570 673 75 
80 563 566 568 571 573 

576 

78 
85 566 568 570 573 

575 678 
80 

90 566 569 571 574 
576 

678 80 
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TABLE  XI  (Cow.).  — TABLE  OF  LOGARITHMS  OF  RADII  OP 
CURVATURE  OF  THE  EARTH'S  SURFACE  IN  METERS  FOR 
VARIOUS  LATITUDES  AND  AZIMUTHS 

[Based  upon  Clarke's  Ellipsoid  of  Rotation  (1866).] 

Azimuth. 60°  lat. 61°  lat. 62°  lat. 63°  lat. 64°  lat. 65°  lat. 66°  lat. 

Meridian. 6.80506 6.80513 6.80520 6.80526 6.80532 6.80538 6.80544 
5 07 14 

20 26 

32 

38 

44 

10 
09 15 

22 

28 
34 40 

45 

15 11 
18 

24 30 

36 

42 47 20 
15 21 

27 33 
39 44 50 

25 
20 26 

31 
37 42 

48 

53 30 25 
30 

36 
41 

46 

51 56 
35 31 

36 
41 

46 

51 

56 60 40 37 
42 46 

51 
56 

60 

64 

45 43 
48 

52 

56 
60 64 68 

50 
50 

54 

58 62 65 69 

73 55 56 60 63 67 70 

74 

77 
60 

62 65 68 
72 75 78 81 

65 67 70 
73 

76 

79 

82 

84 
70 

72 
74 

77 80 

82 

85 87 

75 
75 

78 
80 

83 85 

87 

90 
80 78 80 

83 

85 
87 89 

91 
85 80 

82 
84 86 

88 

90 

92 
90 80 

83 
85 87 89 

91 

93 

Azimuth. 66°  lat. 67°  lat. 68°  lat. 69°  lat. 70°  lat. 71°  lat. 
72°  lat. 

Meridian. 6.80544 6.80550 6.80555 6.80560 6.80565 6.80570 6.80575 
5 44 50 

55 

61 
66 70 75 

10 

45 

51 

56 

62 
66 

71 

76 15 47 
53 58 63 68 

72 

77 20 50 55 60 65 70 74 78 

25 53 
58 

62 

67 72 76 80 
30 

56 
61 65 

70 

74 78 

82 35 60 
64 

69 73 77 

81 84 

40 
64 

68 
72 

76 80 

83 

87 45 
68 72 76 

79 83 86 89 

50 73 76 79 83 86 89 

92 
55 77 80 83 86 89 

91 94 
60 81 

84 
86 89 

91 94 

96 
65 

84 
87 89 92 

94 

96 98 
70 

87 90 

92 94 
96 98 6.80600 

75 90 92 
94 

96 98 6.80600 

01 

80 
91 93 

95 97 99 

01 02 
85 

92 94 
96 98 6.80600 

01 

03 
,               90 93 

95 
97 98 

00 

02 03 
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TABLE  XIL  — VALUES   OF   LOG  m  FOR   COMPUTING   SPHERI- 
CAL EXCESS.    (Metric  System.) 

Latitude Log  m Latitude Log  m 
Latitude 

Log  m 

o  r 

l8  oo 
I  .40639—  10 

0 

2,i 00 

I  .40520  —  10 

0 

48 

00 

I  .40369  -  10 i8  30 
636 32, 

30 

516 

48 

30 

364 

19  00 632 

34 

00 

5" 

49 

00 

359 
19  30 

629 

34  30 

506 

49 

30 

354 

20  00 626 35 
00 

501 

50 

00 349 

20  30 

623 

35 

30 

496 

50 
30 

344 

21  00 

619 

36 

00 

491 

51 

00 

339 
21  30 616 

36 

30 

486 

51 

30 

334 

22  00 612 
Z7 00 

482 

52 

00 329 22  30 608 37 

30 

477 

52 

30 

324 23  00 

605 

38
 

00 

472 

53 
00 319 23  30 

601 

38
 
30 

467 
53 

30 

314 

24  00 597 
39 

00 

462 54 

00 

309 24  30 

594 
39 

30 

457 

54  30 304 

25  00 

590 

40 

00 

452 

55 

00 

299 

25  30 

586 

40  30 

446 

55 

30 

295 

26  00 

582 

41 

00 

441 

56 

00 
290 

26  30 

578 

41 

30 

436 

56 30 

285 

27  00 573 

42 

00 

431 

57 

00 280 

27  30 569 

42 

30 

426 
57  30 

276 

28  00 
56s 

43 

00 

421 

58 

00 

271 

28  30 

560 

43 

30 

416 

58 3
0 

266 

29  00 

556 

44 00 

411 

59 

00 262 

29  30 

552 

44 

30 

406 
59  30 

257 

30  00 

548 

45 

00 

400 

60 00 

253 

30  30 544 

45 

30 

395 
60 

30 

249 

31  00 
539 

46 

00 

390 

61 

00 

244 

31  30 534 

46 

30 

385 

61 

30 

240 

32  CX5 

530 

47 

00 

380 

62 

00 

235 

32  30 
I  40525 

47 

30 

I  40375 
62 

30 

1 .40231 

(The  above  table  is  computed  for  the  Clarke  spheroid  of  1866.) 
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TABLE    XIIL  — CORRECTION    TO    LONGITUDE    FOR    DIFFER- 
ENCE  BETWEEN  ARC  AND   SINE 

logi(-). log  difference. 
log(iX(+) 

logs(-). log  difference. 
log<iX(+). 

3.876 
0  .000  0001 

2-385 

4-871 
0  .000  0098 

3  380 

4  .026 
02 

2-535 

4.882 

103 

3.391 

4. 114 

03 

2.623 

4.892 
108 

3.401 

4.177 

04 

2.686 
4.903 

114 

3.412 

4.225 

05 

2-734 

4.913 

119 

3.422 

4.265 
06 

2.774 

4.922 

124 

3.431 
4.298 

07 

2.807 

4.932 130 
3.441 

4.327 
08 

2.836 

4.941 136 

■  3.450 

4.353 

09 

2.862 
4.950 

142 

3-459 

4  376 10 

2.885 4-959 

147 

■3.468 

4  396 
II 

2.905 

4-968 

153 

3-477 

4.415 
12 

2.924 

4-976 160 3-485 4-433 

13 

2.942 4.985 

166 

3-494 

4-449 

14 

2.958 

4-993 

172 

3.502 

4.464 

15 

2.973 

5.002 

179 

3-5" 
4.478 16 

2.987 

5.010 

186 

3-519 
4.491 

17 

3.000 

5.017 
192 

3  526 

4.503 

18 
3.012 

5.025 

199 

3-534 

4.526 20 

3.035 
5  -033       ■ 206 

3-542 
4  548 

23 

3-057 

5.040 

213 

3  549 

4-570 

25 

3.079 
5  047 

221 

3  556 

4 -591 

27 

3.100 

5-054 
228 

3  563 
4.612 

30 

3. 121 
5.062 

236 
3-571 

4-631 33 

3.140 

5.068 

243 

3-577 

4.649 

36 

3.158 

5  -07s 
251 

3.584 
4.667 39 

3.176 

5.082 

259 

3.591 

4.684 

42 

3.193 

5  .088 

267 

3.597 

4-701 

45 

3.210 

5-095 

275 

3.604 
4.716 

48 

3.225 

5.102 

284 

3. 6x1 

4.732 

52 

3.241 5  -108       ■ 
292 

3  617 

4.746 

56 

3.255 

5 -"4 

300 

3.623 

4.761 
59 

3.270 

5.120 
309 

3.629 4-774 

63 

3  283 

5  -126 

318 

3.63s 

4.788 

67 

3.297 

5-132 
327 

3.641 

4.801 

71 

3 -310 5-138 

336 

3-647 

4.813 75 

3  322 

5-144 
345 

3  653 
4-825 

80 
3-334 

5.150 
354 

3.659 

4-834 

84 

3-343 

5.156 
364 

3.665 4-849 

89 

3-358 

5. 161 

373 

3.670 
4.860 

94 
3-369 5.167 

383 

3  676 
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TABLE    XIV.  —  LOGARITHMS    OF    FACTORS    FOR    COMPUTING 
GEODETIC   POSITIONS 

Lat. Log  A LogB 
LogC LogD LogE 

o    / 

—  10 
—  10 

—  10 

—  10 
—  20 

i8  oo 8.509  5862 8.5122550 
0.91816 

2  .1606 5-7317 

lO 

5836 

2474 
0.92243 2  .1641 5  -7337 

20 

5811 

2397 

0  .92667 

2.1675 

5  -7358 

30 
5785 2320 0  .93088 

2  .1709 
5-7379 

40 
5759 

2243 

0  -93505 
2  .1742 

5-7400 50 
5733 

2165 
0.93919 

2-1775 

5 -7422 19  00 
5707 

2086 0  .94330 2  .1808 
5 -7443 

10 

5681 

2006 

0.94737 
2 .1840 

5-7464 20 5654 

1927 

0.95142 

2  .1872 

5 -7486 30 

5627 

1847 

0  .95544 

2.1903 

5 -7508 
40 5600 

1766 

0  .95943 

2.1934 

5  -7530 

50 

5573 

1684 0  .96339 
2 .1965 

5-7552 
20  00 

5546 

1602 

0  .96733 2  .1996 
5  -7574 

ID 

5518 

1519 
0.97123 2  .2026 

5-7597 

20 

5490 

1435 

0.97511 

2  .2055 

5  -7619 

30 
5462 

1351 0  .97896 
2 .2084 

5  -7642 
40 

5434 

1267 
0.98279 

2.2113 

5 -7664 

50 5406 

1182 

0  .98659 2  .2142 

5 -7688 

21  00 
5377 

1096 
0.99037 2  .2170 

5-77" 
10 

5348 

lOIO 
0.99412 

2  .2198 5-7734 
20 

5320 

0924 0  .99785 
2  .2226 

5-7757 

30 5290 

0836 
I  .00156 

2  .2253 

5  -7780 
40 5261 

0748 

I  .00524 
2  .2280 

5  -7804 
50 5232 

0660 I  .00890 

2  .2307 

5  -7828 
22  00 

5202 

0571 

I  .01253 

2  .2333 

5  -7851 

10 

5172 
0481 

I .01615 

2  .2359 

5  -787s 20 

5142 

0391 

I .01974 2 .2385 

5  -7899 

30 5112 
0301 

I .02331 2  .2411 

5  -7924 

40 5082 

0210 I .02686 
2  .2436 

5  -7948 
50 5051 

0118 

I .03039 
2  .2461 

5  -7972 
23  00 

5020 
8.5120026 

1 .03390 

2  .2485 

5  -7997 
10 

4990 

8.5 1 1  9934 

I .03739 

2  .2510 

5.8021 

20 4959 

9840 

I .04086 

2  .2534 

5  .8046 
30 

4927 9747 
I .04431 

2-2557 

5.8071  . 

40 
4896 

9653 

I -04775 

2  .2581 

5  -8096 
SO 

4865 

9558 

I  .05116 

2 .2604 

5-8121 
24  00 

4833 

9463 

I .05456 
2  .2627 

5  -8146 

10 

4801 9367 

I -05794 
2  .2650 

5.8172 
20 

4769 
9271 

I .06130 
2  .2672 5-8197 

30 

4737 
9174 

I .06464 

2  .2694 

5  -8223 

40 
4704 

9077 

I .06797 
2  .2716 5 -8249 

SO 
4672 

8979 

I  .07128 

2.2738 

5  -8274 
60 8.509  4639 8.5118881 

I -07457 

2.2759 

5-8300 
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TABLE  XIV   {Continued) 

Lat. Log  A Logs LogC 
LogZ? 

Log£ 

O    f 

25  00   8.5 09  4639    8.5 II  8881 

I  -07457 
2  .2759 

5  8300 

10 

4606 

8783 
I  .07785 

2  .2780 

5  -8326 
20 4573 

8684 

I  .08111 2 .2801 
5  -8352 

30 

4S40 

8584 

I  -08435 

2  .2822 
5  -8379 

40 

4507 

8484 I  .08758 2  .2842 
5  -8405 

50 

4473 
8383 

I .09080 2 .2862 

5  -8431 
26  00 4439 

8283 

I .09400 2  .2882 
5  -8458 10 

4406 

8181 1  .09718 2 .2902 
5  -8485 

20 

4372 

8079 

I  .10036 2  .2922 

5-8512 

30 

4337 
7977 

I  .10351 
2  .2941 5  -8539 

40 

4303 
7874 

I .10666 2 .2960 

5  8566 

50 

4269 

7771 

I .10979 
2  .2978 

5  -8593 

27  00 
4234 

7667 
I  .11290 

2  .2997 

5  .8620 

10 

4200 7563 

I .11600 
2  -3015 5  -8647 

20 4165 

7458 

I .11909 
2  .3033 

5  -8675 

30 

4130 
7353 

I  .12217 
2  .3051 

5  8702 

40 

4094 

7248 

1.12523 2.3069 

5  -8730 

50 

4059 

7142 

I  .12829 

2  .3086 

5  -8757 

28  00 4024 

7036 

I-13132 2 .3104 5 -8785 

10 

3988 

6929 
I -13435 

2.3121 5  8813 
20 

3952 

6822 

I -13737 
2-3137 

5  -8841 

30 

3917 

6714 
I. 14037 2-3154 

.  5-8870 

40 
3881 

6607 
I  -14337 

2.3170 

5  -8898 

SO 

3845 
6498 

1 -1463s 
2.3187 

5  8926 29  00 

3808 

6389 
1 .14932 

2  .3203 5  -8955 

10 

3772 

6280 
1. 15228 

2.3218 
5  -8983 20 3735 

6171 

1. 15522 

2  .3234 

5  -9012 
30 

3699 6061 
1.15816 

2  .3249 

5  -9041 

40 
3662 

5950 

1 .16x09 2  .3264 

5.9069 

SO 

3625 

5840 

I .16401 

2  .3279 

5.9098 30  00 

3588 
5729 

I  .16692 
2  .3294 

5 -9127 10 

3551 

5617 
1.16981 

2  -3309 5-9157 

20 

3514 5505 

1  .17270 2  -3323 

5  -9186 

30 
3476 

5393 
I -17558 

2  -3337 

5-9215 

40 

3439 

5281 

I  -17845 2-3351 
5  -9245 

SO 
3401 

5168 

1.18131 2  -3365 
5  -9274 

31  00 
3363 

5054 1 .18416 

2  .3379 

5 -9304 
10 

3325 

4941 

1 .18700 2  .3392 
5 -9334 

20 3287 
4827 I  -18983 2  .3405 

5 -93^3 

30 

3249 
4713 1 .19266 2  -3418 

5  -9393 

40 
3211 

4598 

1 .19548 2  .3431 
5  -9423 

SO 

3173 4483 
1 .19828 

2  .3444 
5  -9453 

60   8.5 
093134   8.  J II  4368 I. 20108 

2  -3456 

5  -9484 
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TABLE  XIV   (Continued) 

Lat. Log  A LogB LogC 
LogZ? 

Log£ 

o  r 

32  00 
8-5093134 8.51 1  4368 I  .20108 

2  .3456 

5  9484 

10 

3096 4252 

I  .20387 
2.3469 

5  -9514 20 3057 

4136 

I  .20666 2  .3481 5  -9544 

30 3018 4020 

I  .20944 
2  -3493 

5  -9575 

40 

2980 
3903 

I  .21220 

2  .3504 

5  9605 

SO 

2940 

3786 

I  .21496 
2-3516 

5  -9636 

33  00 2901 3669 

I  .21772 2  -3527 

5  -9667 10 2862 

3551 

I  .22047 
2  -3539 

5.9698 

20 

2823 

3433 I  .22321 
2  -3550 

5  -9729 

30 

2784 

3315 

I  .22594 

2  -3561 

5-9760 40 

2744 
3197 

I  .22866 

-  2  .3571 

5  -9791 

SO 

2704 

3078 

I  .23138 
2  .3582 

5  -9822 34  00 

2665 
2959 

I  .23409 
2  -3592 

5  -9853 
10 

2625 
2840 

I  .23680 2  .3602 

5  -9885 20 
2585 

2720 

I  .23950 

2  .3612 

5  9916 
30 

2545 

2600 

I  .24219 

2  .3622 

5  9948 40 

2505 

2480 

I  .24488 2  -3632 

5  -9980 
SO 

2465 

2360 

I  .24756 2  .3642 6.oorr 

35  00 

2425 

2239 

I  .25024 
2  .3651 

6  .0043 

10 
2384 

2118 
I  .25291 

2  .3660 

6  .0075 

20 
2344 

1997 
I  -25557 2.3669 

6.0107 

30 

2304 

1875 

1 .25823 
2  .3678 

6.0140 

40 

2263 1754 

1 .26088 

2  .3687 6.0172 

SO 

2222 1632 

1 .26353 
2-3695 

6  .0204 

36  00 2182 

1510 

1 .26617 2  -3704 

6-0237 

10 2141 
1387 

1 .26881 2.3712 

6.0269 

20 
2100 

1265 
1 .27145 

2  .3720 6 .0302 

30 

2059 
'  1 142 1 .27407 

2  .3728 

6  -0334 

40 

2018 

1019 

I .27670 

2  -3735 6  .0367 

SO 

1977 

0895 

1 .27932 

2  .3743 

6 .0400 

37  00 
1936 0772 

1 .28193 

2  -3750 

6 .0433 

10 

189s 

0648 

1 .28454 

2  -3758 
6  .0466 

20 

1853 

0524 
1-28715 

2  -3765 

6  .0499 

30 

1812 
0400 

1 .28975 

2  -3772 

6  -0533 

40 

1771 
0276 

1 -29234 

2  .3779 

6 .0566 

SO 

1729 0151 
I .29494 2-3785 

6.0600 

38  00 

1687 

8.51 1  0027 

I -29753 

2  -3792 

6  .C633 

10 1646 8.5109902 
1 .30011 

2  .3798 

6.0667 

20 
1604 

9777 1 .30269 2  -3804 6 .0701 

30 

1562 

9652 

1 .30527 

2  .3810 

6 -0734 

40 

1521 

9526 

1  -30785 
2  .3816 

6.0768 

5° 

1479 

9401 

1 .31042 2  .3822 6 .0802 
60 8-509  1437 8.5109275 I  31299 

2.3827 
6 .0836 
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TABLE  XIV   (Continued) 

Lat. Log  A LogB LogC LoeD Log£ 

O    f 

39  oo 
8.509  1437 8.5109275 

I  .31299 2  .3827 6  .0836 

lO 

1395 

9149 

I  -31555 2  .3832 

6.0871,  ' 

20 

1353 

9023 I  .31811 
2  .3838 

6.0905 

30 

13" 

8897 

I  .32067 
2  .3843 

6.0939 

40 

1269 

8771 I  -32323 
2  .3848 

6.0974 

50 

1227 

8644 

I  -32578 
2  .3852 

6.1008 

40  00 

1 184 

8517 

I  -32833 

2  -3857 

6.1043 

10 1 142 8391 

I .33088 
2  .3861 

6.1078 

20 
1 100 

8264 

I  -33342 
2  .3866 

6.1113 

30 

1057 

8137 

1  -33596 2  .3870 6.1148 

40 

lois 

8010 
I  -33850 

2  .3874 6.1183 

50 

0973 

7883 
I  .34104 2  .3878 

6.1218 

41  00 0930 7755 I  -34358 
2  .3882 

6.1253 

10 0888 

7628 

I  .34611 

2  .3885 
6.1289 

20 

0845 

7500 

I .34864 

2  .3889 
6.1324 

30 

0803 

7373 
I -35117 2  .3892 

6.1360 

40 

0760 

7245 I  -35370 

2  -3895 

6.1395 

50 

0718 
7117 I  -35623 2  .3898 

6.1431 

42  00 

0675 

6989 
I  -35875 

2  .3901 

6.1467 

10 0632 6861 
1  .36127 

2  .3903 
6.1503 

20 
0590 

6733 

I  -36379 

2  .3906 

6.1539 

30 

0547 

6605 

I  .36631 
2  .3908 

6.1575 

40 

0504 

6477 

I  .36883 
2  .3910 6.1612 

50 

0461 
6348 

I  -37135 2  .3913 
6.1648 

43  00 

0419 
6220 

1  .37386 

2  .3914 6.1684 

10 0376 
6092 I  .37638 2  .3916 6.1721 

20 

0333 

5963 

I  .37889 
2  .3918 

6.1758 

30 

0290 5835 

I  .38141  . 

2  .3919 

6.1795 

40 

0247 

5706 

I  .38392 
2  .3921 

6.1831 

50 

0204 

5578 

I  -38643 
2  .3922 6.1868 

44  00 
0162 

5449 
I  -38894 2  .3923 

6.1905 

10 

0119 

5320 

I  -39145 
2  .3924 

6.1943 

20 0076 

5192 

I  -39396 
2  -3925 

6.1980 

30 

8  .5090033 
5063 

I  .39648 
2  -3925 

6.2017 

40 

8  .5089990 
4935 

I  .39898 2  .3926 

6.2055 

50 

9947 

4806 

I  .40149 

2  .3926 
6.2092 

45  00 
9904 

4677 

I  .40400 2  .3926 
6.2130 

10 

9861 

4548 

I  .40651 
2  .3926 

6.2168 
20 

9818 

4420 

I  .40902 2  .3926 6.2206 

30 
9776 

4291 

I-41153 

2  .3926 

6 .2244 

40 

9733 

4162 

I  .41404 2  -3925 
6.2283 

SO 

9689 

4034 I  -41655 2  -3925 6.2321 

60 
8.508  9647 8.5103905 

I  .41906 

2  .3924 

6.2359 
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TABLE  XIV  (Continued) 

Lat. Log^l Logs       L ogC LogD Log£ 

o   / 

46  00 
8.5089647 8.5103905      I 

41906 

2  .3924 

6-2359 

10 
9604 

3776      I 

42157 
2  .3923 

6  .2398 

20 

9561 

3648      I 
42409 2  .3922 

6  .2436 

30 
9518 

3519      I 

42660 

2  .3921 

6.2475 

40 

9475 
3391      I 

429 1 1 

2  .3920 

6.2514 

50 

9433 
3262      I 

43163 
2  .3918 

6-2553 

47  00 

9390 

■3134      I 
43414 

2  3917 
6.2592 

10 
9347 

3005     •  I 

43666 

2-3915 
6.2632 

20 

9304 
2877      I 

43917 

2  -3913 
6.2671 

30 
9261 

2749      1 44169 

2-39" 
6.2710 

40 

9219 
2621      I 

44421 

2  -3909 
6.2750 

50 
9176 

2493      I 
44673 2  .3906 

6 .2790 

48  00 
9133 

2364      I 

44926 

2  .3904 6  .2830 

10 

9091 

2236      I 

45178 

2  -3901 

6.2870 

20 

9048 

2108      I 

45431 

2  .3898 
6.2910 

30 

9005 1981      I 
45683 

2  -3895 6-2950 

40 

8963 

1853      I 45937 
2  .3892 

6  .2990 

50 
8920 1725      I 46190 

2  .3889 
6 .3031 

49  00 

8878 

1598      I 

46443 

2  .3886 

6  .3071 

10 

8835 

1470      I 
46696 

2  .3882 6.3112 20 

8793 

1343      I 
46950 

2  .3878 

6-3153 

30 

8750 1216      I 

47204 

2  -3875 
6.3194 

40 

8708 
1088      I 47459 

2  -3871 

6-3235 

50 

8666 
0962      I 

47713 
2  .3866 

6.3276 

50  00 

8623 

083s      I 

47968 

2  .3862 6.3318 10 

8581 0708      I 
48223 2  -3858 

6-3359 

20 
8539 

0581      I 48478 

2  -3853 

6  .3401 

30 

8497 

0455      I 

48734 

2  .3848 

6  -3443 

40 

8455 

0328      I 
48989 

2  .3843 6  -3485 

50 

8413 
0202      I 

49246 

2  .3838 

6-3527 

51  00 
8371 8.5100076      I 

49502 

2  -3833 
6-3569 

10 
8329 

8-509  9950      1 
49759 

2  .3828 6.3612 20 

8287 

9825 

50016 

2  .3822 

6 .3654 

30 

8245 

9699      I 

50273 
2-3817 

6.3697 

40 

8203 

9574     I 50531 
2. 381 1 

6  .3740 

50 

8161 
9448     I 50789 

2  .3805 

6.3782 

52  00 
8120 

9323      I 

51048 

2  -3799 

6.3826 10 8078 

9198     I 
51307 

2  .3792 

6.3869 

20 8036 

9074     I 

51566 

2  .3786 6.3912 

30 

7995 8949     I 

51826 

2  -3779 

6  -3956 

40 

7953 8825      I 

52086 

2  .3773 

6.4000 

50 
7912 

8701      I 
52347 2  .3766 

6 .4043 

53  00 
7871 

8577     I 

52608 

2  -3759 

6 .4088 10 
7829 8453     I 52869 

2-3751 6.4132 

20 

7788 

8329     I 

53131 

2  -3744 
6.4176 

30 

7747 8206     I 
53393 

2  3736 
6.4221 

40 7706 

8083     I 

53656 

2  .3729 6 .4265 

50 

7665 
7960     I 

53919 

2.3721 6.4310 
60 8.508  7624 8.509  7838     I . 

54183 

2.3713 

6.4355 
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TABLE  XVI.  — COORDINATES  OF  CURVATURE  (Meters) 

Latitudes. 

Long. 

26° 

27° 

28° 

29° 

X Y X Y X y X Y 

I' 

1668 .7 0  .1 
1654.3 0  .1 

1639  ..1 

0 .1 
1624  .0 

0  .1 

2 
3337  -3 

0.4 

3308  .5 

0.4 

3278.8 

0.4 

3248 .0 

0-5 

3 
5006 .0 

I  .0 

4962  .8 

10 

4918  .2 
1 .0 

4872  .0 

1 .0 4 6674  .6 

1-7 

6617. I 

1-7 

6557-6 1.8 6496.1 
1.8 

5 8343  -3 

2.7 

8271  .4 

2.7 

8197  -o 2.8 8120  .1 

2.9 

6 lOOII .9 

3-« 

9925  -7 
3-9 9836  .4 

4.0 

9744-1 

4-1 

7 1 1680  .6 

5-2 

II579-9 

5-4 

"475-7 

5-5 
11368.1 

5-6 

8 
13349  -2 6.8 13234.2 

7.0 

13115-1 

7-2 

12992  .1 

7-3 
9 I5017.9 8.6 14888  .5 

8.8 14754  .5 

9.1 

14616.1 

9-3 
10 16686.6 10.6 

16542 .8 

10  .9 

16393  -9 

II  .2 
16240 .1 

II -5 

Long. 

30°
 

31°
 

32°
 

33°
 

I' 

1608. I 0.1 

1591  .8 

0.1 1574-9 

0  .1 

1557-6 

0.1 

2 3216.3 

0-5 

3183 -5 

0-5 

3149-8 

0-5 

3115-2 

0-5 

3 4824  .4 1 .1 
4775  -3 

1 .1 

4724-8 

1 .1 

4672  .8 

1 .1 

4 
6432  .6 

1.9 

6367  .1 

1.9 

6299  .7 

1.9 

6230 .3 

2  .0 

5 8040  .7 

2.9 

7958  .9 

30 

7874.6 

3-0 

7787-9 

3-1 

6 
9648  .8 

4.2 9550-6 

4-3 
9449  -5 4-4 9345  -5 4-4 7 11257.0 

5-7 
11142  .4 

5-8 

I 1024 .4 
6.0 10903  .1 6.0 

8 12865. 1 7-5 12734.2 

7.6 

12599-4 

7-8 

12460.7 

7-9 9 14473  -2 9-5 
14325  -9 

9-7 
14174-3 

9.8 

14018 .3 
10  .0 

10 I608I  .4 

II. 7 
159177 

II. 9 

15749  -2 

12  .1 15575  -9 

12.3 

Long. 

34° 

35° 

36°
 

37° 

1' 

1539  -8 
0.1 1521-5 0.1 

1502  .8 

0.1 

1483  .6 

0.1 

2 
3079  .6 

0-5 

3043  -0 

0-5 

3005  .5 

0-5 

2967.1 

0-5 

3 4619  -3 1 .1 
4564  -5 1 .1 

4508  .3 I  .2 4450-7 1 .2 4 6159-1 2  .0 6086.0 2  .0 6011  .1 2  .1 

5934  -2 

2  .1 

5 7698.9 

3-1 

7607.5 

3-2 

7513  -8 

3-2 

7417-8 

3-3 b 9238.7 
4-5 

9129  .0 

4.6 

9016.6 

4.6 

8901 .4 

4-7 

7 10778.5 6.1 10650 .5 
6.2 

10519-3 

6.3 

10384  .9 

6.4 

8 12318.3 8.0 
12172  .0 

8.1 
12022  .1 8.2 

11868.5 

8., 

9 
13858  .0 

10. 1 13693  -5 

10.3 

13524-8 

10  .4 

13352. I 

10 .5 

10 15397  -9 

12-5 

15215-0 

12  .7 

15027.6 
12.8 

14835 -6 

13.0 
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TABLE   XVI  (Com.).  — COORDINATES  OF   CURVATURE  (Meters) 

Latitudes. 

Long. 

I' 

2 

3 
4 
S 
6 
7 
8 
9 

10 

38°
 

39'
 

40°
 

41'
 

X 
1463  -9 

2927  .8 
4391  -7 

585s  -6 

7319.6 
8783 
10247 

11711 1317s 
14639 

0-5 

3-3 
4-7 
6.4 
8.4 

10  .6 

13 -I 

X 

1443  -8 2887  .6 

4331  -4 

5775-2 7219  .0 

8662  .9 

10106.7 

1 1550 -5 
12994  .3 

1 4438. 1 

Y 
o  .1 

o-S 

1 .2 2  .1 

3S 

4.8 

6.5 
8.5 

10.7 

13.2 

X 1423  -3 
2846  .5 

4269  .8 

5693-0 
7116.3 

8539  -6 

9962  .8 

11386.1 
12809  .3 

14232  .6 

Y o  .1 

0-5 

1 .2 

2  .1 

3-3 

4-8 

6-5 

8.5 

10.8 

13-3 

X 1402  .3 

2804  .6 
4206  .9 

5609  .2 

701 I. s 

8413  -7 

9816.0 

11218  .3 

12620  .6 
14022  .9 

0  .1 

o-S 

1  .2 

2  .1 

3  3 

4.8 

6.6 8.6 

10.8 
13-4 

Long. 

42°
 

43"
 

44°
 

45°
 

I' 

1380 .9 0.1 

1359 -I 

O.I 

1336.8 

0  .1 

1314. I 

0.1 

2 
2761 .8 

0-5 

2718. 1 

0-5 

2673.6 

0.5 

2628 .3 

0-5 

3 4142  .7 1 .2 
4077  .2 

1 .2 4010 .4 
I  .2 

3942  .5 
1 .2 

4 5523  -S 
2  .2 

5436  .2 

2  .2 

5347-2 

2  .2 

5256.6 

2  .2 

5 6904.4 

3-4 

6795  -3 

3-4 

6684  .0 

3-4 6570  .8 
3.4 

6 8285  .3 

4-8 

8154-3 4.9 
8020 .8 4-9 7884  .9 

4-9 

7 
9666 .2 

6.6 
9513  -4 

6.6 

9357  -7 

6.6 

9199. 1 

6.6 
8 I 1047 .1 8.6 10872  .4 8.6 

10694.5 
8.6 

10513.2 

8.6 

9 12428.0 

10  .9 
12231  .5 

10.9 

12031 .3 

10  .9 

11827  .4 

10  .9 

10 13808  .8 
13-4 

13590  -5 

13-5 

13368. 1 

13-5 

13141-5 

13-5 

Long. 

46°
 

47°
 

48°
 

49°
 

I' 

1291 .1 
0.1 

1267.6 
0  .1 

1243  .8 

0.1 

1219  .6 

0.1 

2 
2582  .2 

0-5 

2535  -3 

0-5 

2487  .6 

0-5 

2439  -I 

o-S 

3 3873  -3 
I  .2 3802  .9 

I  .2 
3731  -4 

1 .2 3658.7 1 .2 4 5164.4 
2  .2 

5070.5 
2  .2 

4975  -2 

2  .1 
4878  .3 

2  .1 

5 6455  -5 

3-4 6338  -2 

3-4 

6219  .0 

3-3 

6097.9 

3-3 
b 

7746.6 

4-9 

7605.8 

4-8 

7462  .8 

4.8 

7317.5 

4.8 

7 
9037  .6 

6.6 

8873  -5 

6.6 

8706  .6 

6.6 

8537  -o 

6.6 
8 10328.7 8.6 

10141 .1 
8.6 

9950  .4 

8.6 

9756-6 

8.6 

9 11619  .8 

10.9 

1 1408  .7 

10.9 

11194  .2 

10  .9 

10976.2 
10.8 

10 12910.9 
13-5 12676.4 

13-5 
12437-9 13-4 

12195.8 

13-4 
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TABLE  XVII.  — COORDINATES  OF  CURVATURE  (Meters) 

Latitudes. 

25° 

30°
 

35° 

X Y X Y X Y 

s° 

504  645 
9   307 482  288 

10  523 

456  261 

II  421 

10 I 008  603 

37  215 963  658 

42  074 911  379 

45  656 

IS 

I 
511  190 

83  685 I  443  193 

94  59 1 

I  364  214 

102  619 

20 2 on  722 148  656 I  919  982 

167  977 

I  813  632 182  168 25 

2 
509  518 232  038 2  393  116 

262  089 2  258  507 

284  102 

30 

3 003  900 

333   718 

2  861  694 
376  749 

2  697  724 

408  168 

Long. 

40°
 

45°
 

50°
 

5°
 

426  757 II  972 

393  996 

12  160 

358  224 

II  978 

10 852  171 
47  852 

786  492 

48  594 
714  847 47  859 

15 

I  274  904 107  525 I  175  994 
109  162 

I  068  277 

107  482 
20 I  693  628 190  805 I  561  019 

193  635 
I  416  934 

190  581 

25 

2  107  023 297  430 I  940  103 
301  690 I  759  262 

296  785 

30 

2  513  790 427  063 2  311  802 

432  918 

2  093  731 
425  619 
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Aberration,  diurnal,  90,  112 
Absolute  length  of  tape,  39 
Abstract  of  angles,  61 
Accidental  error,  281 
Accuracy,  of  base  lines,  33 

of  horizontal  angles,  60,  65 
of  latitude,  109 
of  time  observation,  97 

Acetylene  light,  23 
Adding  machine,  243 
Adjustment,  of  level,  241 

of  observations,  283 
of  theodohte,  53 
of  transit,  81 
of  zenith  telescope,  103 

Agar-Baugh,  J.  H.,  32 
Agate,  211 
Alidade,  46,  53,  70 
Alignment,  correction,  38 

curve,  143 

Alloy,  32,  63,  213,  240 
Altitude,  73 
Angle,  horizontal,  44 

vertical,  68 

Arcs,  on  earth's  surface,  i 
of  meridian,  134,  187,  181 
oblique,  190 
of  vibration,  220 

Average  error,  316 
Azimuth,  73,  no 

correction,  89 
geodetic,  202 

Back,  azimuth,  166 
reading,  50 

Base  apparatus,  bar,  31 
invar  tape,  28,  32,  34 
steel  tape,  31 

Base  line,  4 
broken,  38 
Epping,  5 
Fire  Island,  5 
Holton,  31 
marking,  36 
Massachusetts,  5 
measurement  of,  36 
precision  of,  33 
Stanton,  28 

Bench  marks,  243,  245,  249 
Bessel's  spheroid,  158,  193 
Bonne's  projection,  267 
Borda,  222 
Boss's  catalogue,  104 
Bouguer,  233 
Boundaries,  171 
Bowie,  W.,  204 
Box  heliotrope,  22 
Bureau  of  Standards,  40 

California,  triangulation  in,  3,  28,  1:39 Catenary,  41 

Center,  of  instrument,  48 
reduction  to,  65 

Centrifugal  force,  208,  235 
Chain  of  triangles,  6,  190 Check  base,  4 

term,  304,  313 
Chronograph,  78 

Circuits,  electrical,  81,  100 
Circumpolar  star,  83,  no 

Clairaut's  Theorem,  210 
Clarke's  spheroid,  158,  193 
Coefficient,  of  expansion,  32,  39 

of  refraction,  13 
CoUimation  error,  56,  57 
Collimator,  vertical,  52 

Compound  events,  280 
Compression  of  earth,  136,  235 
Condition  equations,  294 
Conditions  in  a  figure,  7,  9,  296 
Conformal  projection,  272 
Conic  projection,  272 
Constant  error,  281 
Convergence,  of  meridians,  166 

of  level  surfaces,  245,  253 
Correction,  azimuth,  89 

chronometer,  91 
coUimation,  89 

curvature,  112 
level,  87,  113 rate,  90 

to  observed  quantities,  293 
to  period  of  pendulum,  222 Correlatives,  304 

Cross  hairs,  46,  48 
Curvature,  correction,  112,  200,  245 

36s 
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INDEX 

Curvature,  of  earth,  i,  ii 
mean,  131 
radius  of,  125,  126,  128 

Curve  of  error,  285 
Curves  on  spheroid,  139 
Cut-off  cylinder,  36 
Cylindrical  projection,  274 

Datum,  249 
Davidson  quadrilaterals,  3 
Declination,  73,  106 
Density  of  earth,  198 
Derrick,  26 
Description  of  station,  61 
Direction,  instrument,  44,  46 

measurement  of,  57 
method  of,  57,  113,  309 
probable  error  of,  6,  65 

Distance,  angles,  7 
check, 8 

Distortion  of  map,  265 
Drag  on  centers,  57 
Dutton,  C.  E.,  202 
Dynamic  number,  255 

Eccentric,  angle,  123 
distance,  65 
station,  65 

Eccentricity  of  circle,  59 
Ecliptic,  73 
Elevation,  253 
Ellipse,  123 
Ephemeris,  74,  103 
Equator,  73 
Equinox,  73 
Equipotential  surface,  185,  252 
Errors,  284 
Exponential  law  of  error,  289 

Figure,  adjustment,  295 
in  triangulation,  6 
of  earth,  185 
strength  of,  6 

Finder  circle,  82 
Flash  apparatus,  214 
Flexure,  of  transit,  74 

of  pendulum  support,  216,  283 
Focus,  82 
Foot  pins,  241 
Forward,  azimuth,  166 

reading,  50 
Function,  precision  of,  322 

Gas  pipe  tower,  26 
Gauss's  method  of  substitutio 
Geodesy  defined,  i 
Geodetic,  datxun,  158,  195 

Geodetic,  line,  140 
positions,  158 
surveying,  i 

Geoid,  185,  196,  237 
Gnomonic  projection,  273 
Grade  correction,  37 
Graduation  errors,  57,  58,  59 
Gravitation,  197,  208 constant,  199 

Gravity,  i,  206 
Great-circle  chart,  273 track,  274 

Greenwich  catalogue,  104 
Guillaume,  C.  E.,  32 

Hassler,  F.  R.,  268 
Hayford,  J.  F.,  202 
Heliotrope,  11,  19 

box,  22 
Steinheil,  22 

Helmert,  F.  R.,  209 Horizon,  72 
Hour,  angle,  73 circle,  73 

Hydrographic  maps,  i,  3 

Illumination,  67,  78,  215 
Impersonal  micrometer,  76 
Inclination  error,  55 

Interference  bands,  218 
Interferometer,  216 
International  Geodetic  Association,  107, 

237 

Inverse  geodetic  problem,  170 
Isostasy,  202,  235 

Jaderin,  Edw.,  31 

Key  method,  99 

Lambert's  projection,  271 
Laplace,  equation,  201 

stations,  no,  201 
Latitude,  astronomical,  73,  loi 

geometric,  123,  135 
geodetic,  123,  160,  175 
reduced,  123,  135 

reduction  to  sea-level,  107 
Law,  of  error,  285 

of  pendulum,  206 
Least  squares,  290 

Legendre's  Theorem,  149,  150 
Level,  correction,  87 

latitude,  loi,  103 

pendulum,  213 
precise,  240 
rod,  241 
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Level,  stride,  53,  113,  116,  118 
surface,  252 

Longitude,  97,  160,  175 
Loxodrome,  274 

Manometer  tube,  214 
Marking  stations,  61 
Mean  square  error,  316 
Mendenhall,  T.  C,  211 

Mercator's  projection,  27J Meridian,  73 

arc,  134,  172 
Meridional  parts,  27^  > 
Micrometer,  46,  48,  ioi 

transit,  76 
Micrometric  method,  118 
Microscope,  46 

adjustment  of,  54 
Mirror,  19,  20 

back,  23 
size  of,  22 

Missouri  River  Commission,  31 
Mistakes,  283 
Modulus  of  elasticity,  42 

Naval  observatory  time  signals,  220 
New  England  triangulation,  5 
Normal,  123,  186 

equations,  291,  293 
reduced  normal  equations,  303 

North  American  datum,  159 

Observations,  279 
Orthometric,  correction,  254 

elevation,  254 

Parabola,  41 
Parallax,  240 
Parallel  of  latitude,  172,  266 
Pendulum,  206,  211 
Period  of  pendulum,  221 
Personal  equation,  85 
Phase  of  signal,  67 
Pier,  74,  103,  219 
Pivot  inequality,  87 
Plane  coordinates,  174 

curves,  139 
Plane-table  survey,  3 
Plumb  line,  deflection  of,  72,  109,  li 19s 

Polar  distance,  73 
Pole,  72 

variation,  106 
of  quadrilateral,  298 

Polyconic  projection,  268 
Potential,  250 

energy,  250 

Potential,  function,  250 
Precision  measures,  314 

Primary  triangulation,  2 Prime  vertical,  73 

component  of  deflection,  201 Prism,  240 
level,  240 

Probable  error,  317,  325 
of  direction,  6,  (^5 

Probability,  280 

Quadrilaterals,  6,  8 Davidson,  3 

adjustment  of,  297 
Ramsden,  44 

Reconnoissance,  11 
for  base,  28 

Reduction,  to  center,  65 
to  station,  257 

Reel  for  tape,  32 

Refraction,  12,  68 
coefficient  of,  13,  259,  261 
horizontal,  59,  139 
differential,  106,  245,  247 

Repeating  instrument,  44 
Repetition,  of  angles,  56,  62 

method,  56,  116 
Residual,  284 
Reticle,  54,  76 
Rhumb  line,  274 
Right  ascension,  73 
Run  of  micrometer,  49 

Sag  correction,  41 
Scaffold  of  tower,  26 
Sea-level,  determination  of,  249 

reduction  of,  angle  to,  149 
azimuth  to,  120,  136 
base  to,  40 

gravity  to,  233 
latitude,  107,  256 

Secondary  triangulation,  2 
Side,  or  sine,  equation,  299 
Sidereal  time,  73 

Signal  lamp,  24 
Snellius,  i 

Spherical,  coordinates,  278 excess,  149 

Spheroid,  oblate,  122 
Spheroidal  triangles,  I52 
Spring  balance,  34,  43 
Station,  adjustment,  147,  295 

error,  72,  109,  186,  195 marks,  17,  52 

Stations,  description  of,  16 
Steinheil  heliotrope,  22 
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Stemeck,  211 
Strength  of  figure,  4 
Stride  level,  53,  76,  113,  116,  118 
Sub-surface  mark,  36 
Systematic  error,  281 

Talcott's  method,  10 1,  172 
Temperature,  correction,  39,  222,  248 

errors,  62,  214,  221,  240 
of  rod,  244 
of  tape,  31 

Tension,  apparatus,  34 
correction,  42 

Tertiary  triangulation,  2 
Texas,  triangulation  in,  28,  139 
Thermometers,  for  base  apparatus,  34 
^    for  leveling  rod,  241 

for  pendulum,  213 
Tide  gage,  249 
Topographic,  correction,  234 

deflection,  201 
maps,  X,  3 

Topography,  deflection  of  plumb  line, 
197 

Towers,  
11,  25 

Transit,  instrument,  74 
micrometer,  76 

Traverse,  3,  183 
Triangulation,  i,  3 

Tripod,  signal,  18,  26 of  instrument,  44 
Twist,  of  tripod,  59 

of  triangulation,  62,  202 

Variation  of  pole,  106 
Vernal  equinox,  73 
Vertical,  71 

angles,  61,  68 circle,  69,  72 

curved,  108,  256 
Vibration  of  towers,  26 

Washington,  triangulation  in,  139 
Weight,  284,  293,  321 
Woodward,  R.  S.,  31 

Zenith,  72 

distance,  73,  loi,  10?.  acs 
telescope,  10 1 
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